Dinoflagellate cyst stratigraphy of the Barremian to Albian, Lower Cretaceous, North-East Greenland

GEUS Report file no. 22318

Henrik Nøhr-Hansen

Bulletin 166

1993

Nøhr-Hansen, H. 1993: Dinoflagellate cyst stratigraphy of the Barremian to Albian, Lower Cretaceous, North-East Greenland. *Bull. Grønlands geol. Unders.* 166, 171 pp.

Stratigraphical ranges, geographical distribution and taxonomy of 176 dinoflagellate cyst species are described based on analysis of 192 samples from 40 sections of Early Cretaceous age in North-East Greenland (72°– 76°N). The sections make up an approximately 1500 m thick sandy shale sequence previously referred to as the Aptian–Albian series because of scattered ammonite and *Inoceramus* occurrences.

The dinoflagellate cysts indicate the presence of approximately 140 m of Barremian sediments, not previously identified in North-East Greenland, 220 m of Aptian sediments and approximately 1120 m of Albian sediments.

The stratigraphical ranges of 40 sections are documented by range-charts for each section. The previously published ages, based on macrofossils from the area, are discussed in the light of the present results.

Five new species are erected: Batioladinium shaftes-

buriense, Pseudoceratium iveri, P. toveae, Hapsocysta? benteae and Subtilisphaera kalaalliti. The definition of the genus Bourkidinium and its type species B. granulatum is emended. The relationship between the species Vesperopsis mayi and Muderongia asymmetrica is discussed. The size, shape and ornamentation of 12 species of the genus Pseudoceratium are described in detail.

The stratigraphical ranges and frequency of the dinoflagellate cysts recorded in the present study are evaluated on the basis of published literature. Selected papers are discussed in detail, mainly those dealing with the stratigraphical range of Early Cretaceous dinoflagellate cysts in north-western Europe and the Arctic.

Five new dinoflagellate cyst zones and 13 new subzones are proposed for the studied sequence. The zonation is compared with previously established Early Cretaceous dinoflagellate cyst zonations from north-western Europe and Canada.

Author's address:

Geological Survey of Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.

Cover picture

Pseudoceratium iveri sp. nov. from Stratumbjerg, Wollaston Forland. Drawn by B. Sikker Hansen.

Grønlands Geologiske Undersøgelse Ujarassiortut Kalaallit Nunaanni Misissuisoqarfiat Geological Survey of Greenland

The Geological Survey of Greenland (GGU) is a research institute affiliated to the Mineral Resources Administration for Greenland (MRA) within the Danish Ministry of Energy. As with all other activities involving the non-living resources in Greenland, GGU's investigations are carried out within the framework of the policies decided jointly by the Greenland Home Rule Authority and the Danish State.

© GGU, Copenhagen, 1993

ISSN 0105-3507

Contents

Dansk sammendrag – Imaqarnersiuineq	6
Introduction and geological setting	7
Comparison with previous macrofossil ages	10
Dinoflagellate cvst distribution and zonation in the Lower	
Cretaceous	14
Remarks	18
Samples and methods	19
Samples	19
Preparation	10
Depository of the meterial and analyses	10
Depository of the Parramian to Albian sequence	20
Comparition of the appendix metazial	20
Composition of the organic material	20
Diversity	20
Dominant and frequent species	21
Barremian	21
Aptian	21
Albian	21
Possible low salinity indicators	21
Provincialism	21
Dinoflagellate cyst zonation in East Greenland	22
I. Batioladinium longicornutum Zone	22
I 1. Nelchinopsis kostromiensis Subzone	23
1 2. Pseudoceratium anaphrissum Subzone	28
1.3. Pseudoceratium toyeae Subzone	29
II Pseudoceratium nudum Zone	30
III Circulodinium brevisninosum Zone	31
III 1 Verneronsis longicornis Subzone	32
III 2. Vasparopsis nongicornis Subzone	32
III 2. Vesperopsis may Subzone	22
III 5. Senoniasphaera microreticulata Subzone	22
III 4. Leptodinium: nyalodermopse Subzone	34
IV. Rhombodella paucispina Zone	35
IV 1. Litosphaeridium arundum Subzone	35
IV 2. Chichaouadinium vestitum Subzone	36
V. Subtilisphaera kalaalliti Zone	37
V 1. Wigginsiella grandstandica Subzone	37
V 2. Odontochitina ancala Subzone	38
V 3. Ovoidinium? sp. 1 Subzone	39
V 4. Epelidosphaeridia spinosa Subzone	39
Systematic palynology	40
Division Pyrrhophyta	40
Class Dinophyceae	40
Order Peridinales.	40
Genus Achomosphaera	40
Achomosphaera? neptuni	40
Genus Anteodinium	41
Anteodinium cf A grande	41
Anteodinium reticulatum	41
Genus Atopodinium	11
Atonodinium haromansa	41
Corrus Balanda	41
Deluuda nantana diata	42
	42
Genus Baticasphaera	42

Baticasphaera spumosa	42
Genus Batioladinium	42
Batioladinium? exiguum	42
Batioladinium jaegeri	44
Batioladinium longicornutum	44
Batioladinium micropodum	46
Batioladinium? pelliferum	46
Batioladinium shaftesburiense sp. nov	46
Genus Bourkidinium emend	47
Rourkidinium oranulatum emend	48
Bourkidinium sp. 1	50
Bourkidinium? en ?	50
Conus Callaiosphaaridium	50
Calleiamhani linn ammartáinn	50
	50
	50
Canningia palliata	50
Canningia reticulata	51
Genus Canninginopsis	51
Canninginopsis cf. C. colliveri	51
Genus Carpodinium	51
Carpodinium granulatum	51
Genus Cassiculosphaeridia	51
Cassiculosphaeridia magna	51
Cassiculosphaeridia reticulata	52
Genus Catastomocystis	52
Catastomocystis microreticulata	52
Genus Cauca	52
Cauca parva	52
Genus Chichaouadinium	54
Chichaouadinium vestitum	54
Genus Chlamydonhorella	56
Chlamydanharalla mei	56
Chlamydophorella trabaculosa	56
Commis Circula linium	56
	20
Circulodinium aff. C. attadalicum	20
Circulodinium brevispinosum	57
Circulodinium distinctum	57
Circulodinium sp. 1	58
<i>Circulodinium</i> ? sp. 2	58
Circulodinium? sp. 3	58
<i>Circulodinium</i> ? sp. 4	58
Genus Cleistosphaeridium	60
Cleistosphaeridium? aciculare / Cleistosphaeridium?	
multispinosum complex	60
Cleistosphaeridium huguoniotii	60
Genus Coronifera	60
Coronifera oceanica	60
Genus Cribroperidinium	62
Cribroperidinium? aff. cornutum	62
Cribroperidinium edwardsii	62
Cribroperidinium exilicristatum	62
Cribroperidinium intricatum	64
Cribroperidinium muderopoence	64
Cristopertaintain matteriongense	04

Cribroperidinium tensiftense	64
Genus Ctenidodinium	64
Ctenidodinium elegantulum	64
Genus Desmocysta	64
Desmocysta plekta	64
Genus Diconodinium	65
Diconodinium arcticum	65
Genus Dingodinium	65
Dingodinium? albertii	65
Genus Discorsia	65
Discorsia nanna	65
Genus Dorocysta	65
Dorocysta litotes	65
Genus Ellipsoidictyum	66
Ellipsoidictyum imperfectum	66
Genus Endoscrinium	66
Endoscrinium campanula	66
Endoscrinium cf. E. rostratum	66
Genus Epelidosphaeridia	66
Epelidosphaeridia spinosa	66
Epelidosphaeridia sp. 1	66
Genus Exiguisphaera	67
Exiguisphaera plectilis	67
Genus Exochosphaeridium	67
Exochosphaeridium phragmites	67
Genus Florentinia	67
Florentinia cooksoniae / Florentinia mantellii	
complex	67
Genus Fromea	67
Fromea amphora	67
Fromea aff. F. expolita	68
Fromea fragilis	68
Fromea cf. F. glabella	68
Fromea sp. 1	68
Genus Gochteodinia	70
Gochteodinia villosa	70
Gochteodinia villosa subsp. multifurcata	70
Genus Gonyaulacysta	70
Gonvaulacysta aff. G. cassidata	70
Gonvaulacysta fastigiata	70
Gonyaulacysta helicoidea subsp. helicoidea	70
Gonyaulacysta jurassica	71
Gonyaulacysta perforobtusa	71
Genus Hapsocysta	71
Hapsocysta? benteae sp. nov	71
Genus Heslertonia.	72
Heslertonia heslertonensis	72
Genus Hystrichodinium	73
Hystrichodinium aff. H. furcatum	73
Hystrichodinium pulchrum subsp. pulchrum	73
Hystrichodinium ramoides	73
Hystrichodinium voigtii	74
Genus Hystrichosphaeridium	74
Hystrichosphaeridium arborispinum	74
Genus Hystrichosphaerina	74
Hystrichosphaerina schindewolfii	74
Genus Kiokansium	76

	-
Genus Kleithriasphaeridium	76
Kleithriasphaeridium corrugatum	76
Kleithriasphaeridium eoinodes	78
Genus Lagenadinium	78
Lagenadinium? membranoidium	78
Genus Leptodinium	78
Leptodinium cancellatum	78
Leptodinium? cf. L. delicatum	78
Leptodinium? hadrum	79
Leptodinium? hyalodermopse	79
Genus Levisphaera	79
Levisphaera cf. L. crassicingulata	79
Genus Litosphaeridium	79
Litosphaeridium arundum	79
Litosphaeridium siphoniphorum	79
Genus Luxadinium	80
Luxadinium sp.	80
Genus Meiourozonvaulax	80
Mejourogonyaulax staveri	80
Genus Muderongia	80
Muderonoja australis	80
Muderongia extensiva	82
Muderongia ef M pariata	82
Muderongia cimpler	82
Muderongia off M simpley subsp migraparforate	02
Muderongia all. M. simplex subsp. microperjorala.	04
Muderongia siauroia	04
Muderongia tetracanina	04
Muderongia CI. M. tomaszowensis	84
Genus Netchinopsis	84
Nelchinopsis kostromiensis	84
Genus Nyktericysta	85
Nyktericysta? vitrea	85
Genus Odontochitina	85
Odontochitina ancala	85
Odontochitina costata	85
Odontochitina imparilis	86
Odontochitina cf. O. imparilis	86
Odontochitina operculata	86
Odontochitina singhii	86
Genus Oligosphaeridium	88
Oligosphaeridium cf. O. albertense	88
Oligosphaeridium? asterigerum	88
Oligosphaeridium complex	88
Oligosphaeridium cf. O. fenestratum	88
Oligosphaeridium perforatum subsp. colum	90
Oligosphaeridium perforatum subsp. perforatum	90
Oligosphaeridium poculum	90
Oligosphaeridium prolixispinosum	90
Oligosphaeridium cf. O. pulcherrimum	90
Oligosphaeridium cf. O. totum	91
Oligosphaeridium sp. 1	91
Genus Ovoidinium	91
Ovoidinium cinctum	91
Ovoidinium? sp. 1	91
Ovoidinium sp. 2	92
Ovoidinium sp. 3	92
Ovoidinium sp. 4	92
Genus Palaeohystrichophora	92

Palaeohystrichophora infusorioides	92
Genus Palaeoperidinium	93
Palaeoperidinium cretaceum	93
Palaeoperidinium? sp. 1	93
Genus Pareodinia	93
Pareodinia spp	93
Genus Phoberocysta	93
Phoberocysta neocomica subsp. neocomica	93
Genus Prolixosphaeridium	93
Prolixosphaeridium parvispinum	93
Genus Protoellipsodinium	94
Protoellipsodinium clavulum	94
Protoellipsodinium spinocristatum	94
Genus Pseudoceratium	94
Pseudoceratium anaphrissum	94
Pseudoceratium eisenackii	96
Pseudoceratium expolitum	100
Pseudoceratium aff. P. expolitum	100
Pseudoceratium cf. P. interiorense.	100
Pseudoceratium iveri sp. nov.	100
Pseudoceratium nudum	102
Pseudoceratium pelliferum	104
Pseudoceratium polymorphum	104
Pseudoceratium cf P retusum	106
Pseudoceratium cf. P. solocispinum	106
Pseudoceratium toyeae sp. nov	108
Genus Pterodinium	110
Pterodinium sp	110
Genus Rhombodella	110
Rhombodella paucispina	110
Rhombodella vesca	112
Genus Rhymchodiniansis	112
Physichodinionsis of <i>P</i> antiqua	112
Rhynchodiniopsis Cl. K. aphana	112
Genus Pisaudalla	112
Piagudella sp	112
Conus Senoniambaora	112
Semoniaenhaava miaroratiaulata	112
Comus Sentusidinium	112
Sentusidinium varmusseum	112
Sentusidinium vertucosum	112
Sentusidinium sp. 2	113
Conus Similadinium	113
Similadinium anamii	113
Come Scielforiter	113
Securitarian opp	113
Spinijerites spp	112
Stick and benefician of Scottan benefician	113
Suprosphaeriaium cl. S. anthophorum	113
Subtilierbaava halaalliti en anv	114
Subulisphaera kalaallii sp. nov	114
Conus Surgularphaeridium	110
Superloophageidium off S - Lowin	110
Surcuosphaeriaium an. S. phoenix	110

		1.1.1
Genus Systematophora		116
Systematophora aff. S. cretacea	• • • • • • •	116
Genus Tanyosphaeridium		116
Tanyosphaeridium boletum		116
Tanyosphaeridium cf. T. isocalamus		118
Tanyosphaeridium salpinx		118
Genus Trichodinium		118
Trichodinium speetonense		118
Genus Tubotuberella		120
Tubotuberella uncinata		120
Tubotuberella sp		120
Genus Vesperopsis		120
Vesperopsis? digitata		120
Vesperopsis aff. V. fragilis		120
Vesperopsis longicornis		120
Vesperopsis mayi		122
Genus Wallodinium		122
Wallodinium krutzschii		122
Wallodinium luna		124
Genus Wigginsiella		124
Wigginsiella grandstandica		124
Genus Xenascus		124
Xenascus ceratioides		124
Genus Xiphophoridium		124
Xiphophoridium alatum		124
Dinoflagellate cvst 1		126
Dinoflagellate cyst 2		126
Dinoflagellate cyst 3		126
Dinoflagellate cyst 4		126
Group Acritarcha	•••••	128
Genus Leiofusa		128
Leiofusa en		120
Conus Schizowstia	* * * * * * *	120
Schizometia spp	• • • • • • • •	120
Schizocysha spp	•••••	128
		128
Benerospermetta		128
Plerospermella CI. P. australiensis	• • • • • • •	128
Genus Ulvella	•••••	128
cf. Ulvella nannae	• • • • • • • •	128
Miospores		128
?Acanthotriletes varispinosus		128
Aequitriradites ornatus		128
Costatoperforosporites		128
Costatoperforosporites sp		128
Plicatella concentrica		128
Plicatella insignis		128
Trilobosporites apiverrucatus		128
Miscellaneous		128
?Hair from leaf		128
Acknowledgements		129
References		129
Appendix		135
an an an an an an an ann an an an an an		

Dansk sammendrag

Indholdet af dinoflagellat-cyster er undersøgt i 192 prøver fra 40 Nedre Kridt profiler i Østgrønland (72°– 76°N). Stratigrafisk og geografisk udbredelse samt taxonomi er beskrevet for 176 dinoflagellat-arter. De undersøgte profiler udgør en ca. 1500 m mægtig akkumuleret, sandet skiferlagfølge. Denne lagfølge er tidligere blevet beskrevet som Aptian–Albian serien på baggrund af dens indhold af få daterbare ammoniter og *Inoceramus*-arter.

Denne undersøgelse af dinoflagellat-cyster indikerer tilstedeværelsen af ca. 140 m aflejringer af barremian alder. Barremian aflejringer er ikke tidligere identificeret i Østgrønland. Ca. 220 m aflejringer er af aptian alder og ca. 1120 m er af albian alder.

Alderen af hver af de 40 undersøgte profiler er dokumenteret ved hjælp af udbredelsesdiagrammer ('range charts') og er sammenlignet med tidligere dateringer af makrofossiler fra området. Fem nye arter er defineret: Batioladinium shaftesburiense, Pseudoceratium iveri, P. toveae, Hapsocysta? benteae og Subtilisphaera kalaalliti. Emenderinger af slægten Bourkidinium og dens type-art, B. granulatum, er foreslået. Mulige relationer mellem arterne Vesperopsis mayi og Muderongia asymmetrica diskuteres. Inden for slægten Pseudoceratium er størrelse, form og ornamentering af 12 arter detaljeret beskrevet.

Stratigrafisk udbredelse af dinoflagellat-arter rapporteret i denne undersøgelse er evalueret på baggrund af publiceret litteratur. Udvalgte afhandlinger, der beskriver udbredelsen af dinoflagellat-cyster fra Nedre Kridt i Nordvesteuropa og de arktiske områder, er kommenteret.

Fem nye dinoflagellat-zoner og 13 subzoner foreslås for lagserien. Den østgrønlandske zonering er sammenlignet med tidligere opstillede Nedre Kridt zoneringer fra Nordvesteuropa og Canada.

Imaqarnersiuineq

Tunumi (allorniusat 72°–76°N akornanni) uumasuaqqat ujaranngorsimasut dinoflagellat-cystit qanoq amerlatiginerat ujaqqani 192-ni ujaqqani qaleriiani 40-suni nedre Kridtimeersuni misissorneqarsimavoq. Dinoflagellatit 176 assigiinngitsut ujaqqani qaleriiaani nunami qanoq isorartutigisumi siaruarsimatiginerat kiisalu ilaqutariissusaat allaatigineqarsimavoq. Ujaqqat ikialasut sioqqanik akullit qaleriiutaartut katillutik 1500 m-it missanik issususeqarput. Kaleriiaat taakku ikittunnguanik amikunik uilunillu ujaranngorsimasunik nassaarfiusarneri tunngavigalugit siornatigut Aptian–Albian seriamut atasutut allaatigineqartarsimavoq.

Dinoflagellat-cystinik misissuinerup ersersippaa ujaqqanik barremian nalaani pinngorsimasunik 140 m-it missaanni issutigisunik peqartoq. Tunumilu tamakku siornatigut siumorneqanngisaannarsimapput. Ujaqqat qaleriiutaartut 220 m-it missaanni issussusillit aptian nalaani kiviorarsimapput 1120 m-illu missaanni issussusillit albian nalaani kiviorarsimallutik.

Ujaqqat qaleriiutaartut 40-t qanoq pisoqaassusiisa paasiniarat uumasuaqqat ujaranngorsimasut qanoq siaruarsimatiginerat tunngavigalugu uppernarsarneqarsimavoq aammalu tamaani uumasut anginerusut ujaranngorsimasut siornatigut qanga pinngorsimanerinik misissuinerit tunngaviusimallutik. Ilaqutariit nutaat tallimaat aalajangerneqarsimapput: Batioladinium shaftesburiense, Pseudoceratium iveri, P. toveae, Hapsocysta? benteae aamma Subtilisphaera kalaalliti. Ilaqutariillu Bourkidinium kiisalu B. granulatum pisoqaassusiisa naqqinneqarnissaat siunnersuutigineqarsimavoq. Ilaqutariit Vesperopsis mayi aamma Muderongia asymmetrica imminnut ilaqutariissinnaanerat misissorneqarpoq. Ilaqutariiusullu arqaneq marluusut Pseudoceratium taaguutillit akornanni angissusaat, ilusaat qaleruaallu sukumiisumik allaaserineqarsimavoq.

Dinoflagellatit assigiinngitsut qanoq siaruarsimatiginerinik naliliineq allaatigisat saqqummersittareernikut tunngavigalugit ingerlanneqarsimavoq. Allaaserisat immikkut toqqakkat, Europap avannaata kitaani nunanilu issittuni nedre Kridtip nalaani dinoflagellat-cystit qanoq siaruarsimatiginerannik allaaserinnittut uparuarneqarsimapput.

Ujaqqani qaleriiutaartuni dinoflagellatinik akoqartut nutaat tallimat taakkualu ataanni immikkoortut 13-nit siunnersuutigineqarput. Tunumi taama immikkoortiterneqarsinnaanerat Europap avannaata kitaani Canadamilu nedre Kridtimi pisoqaassusilinnut siornatigut immikkoortiterinernut assersuunneqarsimapput.

Introduction and geological setting

The present study describes the biostratigraphy of the Lower Cretaceous sandy shale sequence in East Greenland (72° - 76° N, Fig. 1). Dinoflagellate cysts recorded from 40 sections throughout the region dated the sequence as Barremian to Albian (Fig. 2). The project is part of the 'Studies of the onshore hydrocarbon potential in East Greenland' led by the Geological Survey of Greenland (GGU) and described by Marcussen *et al.* (1987, 1988).

Mesozoic sediments in East Greenland have been studied since 1870. A detailed historic review of the expeditions in the area between 1870 and 1956 has been given by Donovan (1957) and updated by Surlyk (1978a).

The Aptian and Albian succession has been treated in detail by Maync (1949) and Donovan (1949, 1953, 1955, 1957, 1972) and subsequently, in less detail, by Surlyk (1978a, 1978b, 1990), Marcussen *et al.* (1987, 1988) and Stemmerik *et al.* (1993).

The sequence has been dated as Aptian to Albian (Spath, 1946; Maync, 1949; Donovan, 1953, 1955, 1957) based on the rather sporadic occurrence of macrofossils. Maync (1949, pp. 195–211, 280–281) termed the shale sequence the 'Aptian–Albian series' or '*Inoceramus* Beds' (Fig. 3). Maync (1949, pp. 211–212, 280–281) questionably correlated the 'Home Foreland Beds' from the north-eastern part of Hold with Hope with the 'Aptian–Albian series' (Fig. 3). According to Maync (1949), the exposed total thickness of the 'Aptian–Albian series' amounts to more than 2000 m. Donovan (in Callomon *et al.*, 1972, pp. 21–24) reported that Hauterivian and Barremian sediments are unknown in East Greenland. Surlyk (1990) mentioned that the Lower Cretaceous shale sequence reaches a cumulative thickness of 1000 m.

The present study indicates a cumulative thickness of approximately 1500 m for Maync's 'Aptian-Albian series', which according to the present study also includes Barremian sediments (Figs 3, 4). The Barremian deposits are represented by approximately 140 m of poorly laminated, silty shales with abundant kidney shaped calcareous concretions. These shales are erosively overlain by a thin calcareous sandstone of early Aptian age, followed by 80 m to 220 m of sandy shale sediments of Aptian age. Following a presumed depositional break, in the upper Aptian - lower Albian, depositional rates increased considerably and approximately 1120 m of shales and finegrained sandstones were deposited during the Albian. A hiatus between the lower and middle Albian and a second hiatus between the middle and upper Albian are suggested by the fact that several dinoflagellate cyst species have their last or first occurrences at these levels (Fig. 8). The Albian succession comprises several coarsening-upward cycles (Fig. 4).

The overall depositional environment during the Barremian–Albian was apparently a muddy inner shelf with abundant sedimentation of sand beds (Stemmerik *et al.*, 1993). The coarsening-upward cycles recorded in the Albian succession may be a sedimentary response to changes in sea-level and repeated syn-tectonic activity along the western, north–south trending border faults (Surlyk *et al.*, 1981). The tectonic activity was presumably caused by extensional faulting (Surlyk, 1990).

The Barremian–Albian succession rests unconformably on sediments of Late Permian to Early Cretaceous age (Stemmerik *et al.*, 1993). During deposition of the shales an increase in subsidence rate took place, possibly associated with an overall sea-level rise initiated during the latest Hauterivian? – early Barremian and culminating in the Albian (Figs 2, 4, Enclosure 1; Stemmerik *et al.*, 1993).

It is notable that the oldest part of the succession (Barremian to upper Aptian – lower Albian) is best developed in the northern region (from north of Haystack to the northern part of Wollaston Forland) whereas the youngest part of the succession (lower Albian to upper Albian) is mainly dominated in the southern region (southern Wollaston Forland to Traill Ø; Fig. 5).

North of the studied area, Lower Cretaceous (Valanginian and Aptian) outcrops are reported only from Store Koldewey by Ravn (1911), Koch (1929a, 1929b), Frebold (1935), Maync (1949), Donovan (1957) and Stemmerik & Piasecki (1990). Examination, by the present author, of dinoflagellate cysts from this material only indicates the presence of upper Barremian sediments on Store Koldewey, whereas no dinoflagellate cysts of Valanginian or Aptian age have been recorded.

From Germania Land, north of Store Koldewey, macrofossils from loose boulders of Aptian age have been reported by Ravn (1911) and Rosenkrantz (1934, p. 24), but no outcrops have been recorded.

From the Wandel Sea Basin in North Greenland ammonites of late Volgian to early Valanginian and early to middle Albian ages have been reported by Birkelund & Håkansson (1983). Dinoflagellate cysts from the same area indicate ages from middle Oxfordian to early Valanginian (Håkansson *et al.*, 1981). Dinoflagellate cysts of early Albian age have also been recorded from the area by Århus (1991).

From southern Jameson Land, south of the studied

Fig. 1. Map of localities mentioned in the text, Cretaceous outcrops and faults in the studied area in East Greenland (72°-76°N), based on Koch & Haller (1971) and Surlyk (1977b, 1978b).

9

Fig. 2. Distribution of the 40 examined sections that yielded dinoflagellate cysts. The length of the bars represent the thicknesses of the sections and the hatching illustrates the stages represented in each section, as determined on the basis of the dinoflagellate cyst assemblages. The numbers of the sections are the same as those used throughout the paper. The latitudinal/longitudinal position of each section is given in the appendix.

Fig. 3. Stratigraphical subdivision of the Lower Cretaceous beds of East Greenland.

area, the youngest Lower Cretaceous formation described is the Ryazanian – lower Valanginian Hesteelv Formation (Surlyk *et al.*, 1973; Surlyk *et al.*, 1986, fig. 2; Fig. 3).

According to C. Marcussen (personal communication, 1991) seismic data from Scoresby Sund, south of Jameson Land, indicate that the Jameson Land basin continues to the south beneath the Lower Tertiary basalts on the southern shore of the fjord. Probable Lower Cretaceous sediments attain a total thickness here of up to 500 m. On Milne Land, dinoflagellate cysts indicating middle Volgian to late Ryazanian – early Valanginian ages have been reported by Piasecki (1979). Further south, in the Kangerdlugssuaq area (68°N) dinoflagellate cysts indicating middle Albian to Cenomanian and late Turonian ages have been recorded by Schiøler (in Hoch *et al.* in press).

Comparison with previous macrofossil ages

Previous biostratigraphic studies of Aptian and Albian deposits from East Greenland are compared with the results obtained in the present study (Fig. 2, Enclosure 1). The localities are discussed in geographical order beginning from the north. Localities are illustrated in Fig. 1.

Surlyk (1978b, p. 80, loc. 4, fig. 1) reported uppermost Ryazanian to Valanginian strata north of Haystack which might belong to the sandy parts of the Albrechts Bugt Member or to the transition to the Young Sund Member (Surlyk, 1978a; Fig. 3). However Surlyk (1978b) mentioned that an Aptian–Albian age cannot be totally excluded. Section 1 in the present study is represented by an unconsolidated interbedded silt and sand sequence, corresponding to Surlyk's (1978b) deposits. Dinoflagellate cysts from this section strongly indicate a latest Barremian age.

Surlyk (1978b, p. 80, loc. 7, fig. 1) reported an ammonite fragment from north of Kap Oswald Heer, on the east coast of Hochstetter Forland, and mentioned that the ammonite fragment was identified with some hesitation as an early Aptian species. Section 2, is supposed to correlate with Surlyk's (1978b) location 7, and contains dinoflagellate cysts indicating an early Albian age.

Bøgvad & Rosenkrantz (1934) reported an *Inoceramus* specimen indicating an late Aptian age for shales exposed near Kap David Gray on the south coast of Shannon (section 5 in the present study). Dinoflagellate cysts from one sample in this section are of middle Albian age.

Fig. 4. Cumulated stratigraphic log of the studied deposits. The geographical distribution of the 15 sections that makes up the log are illustrated on the insert map. The 15 sections are correlated by the dinoflagellate cyst content and are the same as used for the composite range charts (Fig. 7, Enclosure 2).

Ba	Barremian		Aptian			Albian				Sec					
ι	-	U		L		U	L	M		U		U		tion	
	п		Ħ		日			R			А			Zones	
-	2	з		-	N	ω	4	-	N	-	2	з	4		Subzones
		_		_			-							1 2 3 4	North of Haystack Hochstetter Forland Shannon
a de la constante de	_		=					-						6 7 8 9 10 11	Kuhn Ø
-	-					-								12 13 14 15 16 17 18 19 20 21	Wollaston Forland
														22 23	Clavering Ø
							-					-		24 25 26 27 28	Hold with Hope
										•				29 30 31	Geographical Society Ø
							-				-			32 33 34 35 36 37 38 39 40	Traill Ø

Fig. 5. Correlation and geographical distribution of the 40 sections that yielded dinoflagellate cysts.

Several Jurassic and Lower Cretaceous sections from Kuhn Ø were described by Maync (1949). The southernmost section (section S) is situated approximately 7 km north-east of Kap Hamburg and was referred to the Ap-

12

tian series based on lithological features. Section 11 is located close to Maync's section S and is dated as late early Barremian, based on dinoflagellate cysts.

Neither Maync (1949) nor Surlyk (1977a, 1978a) men-

tioned the approximately 26 m, thick very weathered shale unit above the Rødryggen Member in their description of the section at '*Perisphinctes*-Ravine', Kuhn Ø. The shale unit (section 10 in the present study) is dated as latest Hauterivian – earliest early Barremian based on dinoflagellate cysts.

Maync (1949) recorded six exposures (A-F) situated between Kap Maurer in the north of Kuhn Ø, and the 'Danish Trappers hut' north of 'Perisphinctes-Ravine', on the east coast of Kuhn Ø. The sediments were dated as early and late Aptian, based on ammonites, belemnites and Inoceramus species. Mayne mentioned that the exposures (A-F) cover almost the same stratigraphical interval, illustrated by a 220 m combined section (Maync, 1949, p. 27, fig. 4). Four sections (6-9), from the same area, have been analysed for dinoflagellate cysts. Section 6 (43 m, Enclosure 1) was collected at the first exposed black shale south of Kap Maurer and is comparable with exposure A of Maync. Section 6 represent at least 23 m upper Barremian sediments, whereas the uppermost sample is lower Aptian. Section 7 (90 m, Enclosure 1) is situated approximately halfway between the two hunting cabins (the 'Norwegian Trappers hut' in the north and the 'Danish Trappers hut' north of 'Perisphinctes-Ravine') and is comparable with Maync's exposure E. The lower 70 m of the section are of upper Barremian age according to the dinoflagellate cysts, whereas the uppermost sample is dated as early Aptian.

Section 8 on eastern Kuhn Ø consists of 32 m of sediments (Enclosure 1) dated as late Barremian based on dinoflagellate cysts. The section is situated approximately 1 km south of section 7 and might be comparable with exposure F of Maync.

Section 9 is situated approximately half way between section 8 and the 'Danish Trappers hut' on eastern Kuhn Ø. This section is dated as late early Barremian based on dinoflagellate cysts. The section may be situated close to Maync's (1949, pl. 1) section 3. However correlation of the sections is questionable. Maync recorded the *Aucella* limestone (according to Surlyk, 1978a, now Albrechts Bugt Member; Fig. 3) and the red sandstone (according to Surlyk, 1978a, now Rødryggen Member; Fig. 3) below the black shale of Aptian age in his section 3 whereas only 25 m of black shale is recognised in section 9 (Enclosure 1) from the present study.

A section from Kap Berlin, Brorson Halvø, Wollaston Forland was dated as Albian, based on ammonites and species of *Inoceramus* (Maync, 1949). East of Kap Berlin Maync (1949) recorded a doubtfully identified Aptian ammonite specimen. Dinoflagellate cysts from section 12, situated south-west of Kap Berlin, indicate an early and late Aptian age whereas section 13, located south of section 12, is dated as early Aptian, late Aptian and early Albian ages. The presence of sediments of Aptian age in the two sections is thus in accordance with Maync's assumed Aptian ammonite from east of Kap Berlin.

At Rødryggen, Wollaston Forland, Maync (1949) recorded an Aptian ammonite in the black sandy shale above the Valanginian Rødryggen Member (Surlyk, 1978a; Fig. 3), although Spath (1946) remarked that the species is also known from the upper Barremian. Dinoflagellate cysts from the two sections 15 and 16 strongly indicate a latest early and earliest late Barremian age for the black shale unconformably resting on the Rødryggen Member which support Spath's remarks.

From the northern flank of Gyldenspids, Wollaston Forland, Maync (1949) described a 618 m thick undifferentiated Aptian–Albian sequence. Here he recorded poorly preserved ammonites, of presumed Aptian age. According to Donovan (1957), these ammonites were not among the specimens identified by Spath (1946). The *Inoceranus* specimens recorded from Gyldenspids (Donovan, 1957) suggest that the greater part, if not the whole section, is of Albian age. Dinoflagellate cysts indicate a middle Albian age for section 20 (470 m, Enclosure 1) from the northern flank of Gyldenspids.

Maync (1949) described a section from Stratumbjerget, Wollaston Forland where he mentioned that black shale with marl bands of indubitable Aptian–Albian age unconformably rest on the Valanginian Rødryggen Member. Section 21 correlates with Maync's black shale. The dinoflagellate cyst assemblages indicate that the lower 30 m is of early Barremian age, followed by approximately 70 m of late Barremian age and one uppermost sample, situated 105 m above the Rødryggen Member, yielded dinoflagellate cysts of middle Albian age. This indicates the presence of a significant hiatus between the upper Barremian and the middle Albian (Enclosure 1) in the section though it is not visible in the outcrop.

A 433 m Valanginian to Aptian sequence from Kuhnpasset to Aucellabjerget, Wollaston Forland, has been described by Maync (1949). According to Maync the Aptian part of the section constitutes at least 140 m but another 150 m below may also be Aptian (Maync, 1949, fig. 27). The Aptian age was based on Spath's (1946) identification of ammonites from two levels in Maync's section. The ammonites were recorded from 130 m and 145 m below the basalts which rest on Maync's Aptian section. Section 17 in the present study consists of 130 m of sediments (Enclosure 1) situated immediately below the basalts at Aucellabjerget. The dinoflagellate cysts indicate that the lower 60 m of section 17 is of late Barremian age whereas the upper 70 m is of early and late Aptian age.

Several sections were measured near Kontaktravine, Dolomitdal, north-eastern Clavering Ø by Maync (1949) who suggested an Aptian–Albian age. The thickest section is 105 m. Donovan (1957) mentioned that all the exposures on Clavering Ø dated by macrofossils are of Albian age and suggested that the sections from the Kontaktravine region may also belong to this stage. Dinoflagellate cysts from section 22 (147 m, Enclosure 1) at Kontaktravine indicate a early middle Albian age.

Maync (1949) described *Inoceramus* dated Albian strata from the Langelinie, eastern Clavering Ø. Section 23 (386 m, Enclosure 1) from the western part of Langelinie Bjerg is dated as middle Albian based on dinoflagellate cysts.

Maync (1949) proposed the lithological unit 'Home Foreland Beds' (Fig. 3) for the ferruginous sandstones and black shales with ironstone concretions situated below the plateau basalts on the north side of Home Forland on Hold with Hope. A 385 m section through the beds had previously been published by Frebold (1934) who dated the beds as Senonian based on a bivalve found by E. Nielsen. However, Maync (1949) rejected a Senonian age, based on lithological similarity between the 'Home Foreland Beds' and the 'Inoceramus Beds' (Maync, 1949; Fig. 3) of Aptian and Albian age. Additionally Maync (1949) reported the discovery of an Aptian-Albian Inoceramus from the 'Home Foreland Beds'. Donovan (1953, 1957) stressed the danger of correlations based primarily on lithology but mentioned that Maync had extensive experience in the Mesozoic of this part of East Greenland, Donovan (1957) further mentioned that Maync's records of the Aptian-Albian Inoceramus species presumably have been based on field identification as the species did not appear in the macrofossil collection that Donovan received from Dr. J. Sornay who studied Maync's material. Sections 24 and 25 in this study from the northern part of Home Forland consist of more than

100 m of shale sediments (Enclosure 1). Section 24 covers the interval 330–452 m, whereas section 25 covers the interval 5–110 m. Both sections are below the basalts and are here interpreted as representing parts of the 'Home Foreland Beds'. The study of dinoflagellate cysts from these sections strongly indicates a middle to latest Albian age.

The published information of the Lower Cretaceous on Geographical Society Ø is sparse. Donovan (1955) reported *Inoceramus* species of Albian? and Cenomanian ages from sediments in Tværdal. Dinoflagellate cysts from three sections (29–31) in Tværdal suggest a middle late Albian age.

A few belemnites from Donovan's (1953) localities 78–80 on the coast north of the Rold Bjerge, northeastern Traill Ø, indicate an 'Infra-Valanginian' age (Fig. 3). The dinoflagellate cyst content from the same localities (section 33) and from a nearby shallow core (section 32) indicate an early Aptian age.

Donovan (1953) recorded early Albian ammonites in baked shales at Rold Bjerge, Traill Ø. No palynomorphs have been obtained from these shales whereas dinoflagellate cysts from section 35, south-east of Rold Bjerge, indicate a late Albian age.

At Månedal, south of Rold Bjerge, Traill Ø, Donovan (1953) recorded bivalves from his locality 66 and suggested that the macrofossils indicated an Albian age. The dinoflagellate cyst content from section 34 (10 m, Enclosure 1) at the northern slope of Månedal indicates an early Albian age.

Dinoflagellate cysts have not been recorded from Donovan's (1953) Albian – Cenomanian localities in the area of Sortefjelde, Traill Ø, whereas dinoflagellate cysts from sections 36 to 40 from Svinhufvud Bjerg, Traill Ø, indicate a late Albian – early? Cenomanian age.

Dinoflagellate cyst distribution and zonation in the Lower Cretaceous

The literature on Lower Cretaceous dinoflagellate stratigraphy from East Greenland is very sparse and in order to establish the present dinoflagellate stratigraphy it has been necessary to consult papers describing Lower Cretaceous dinoflagellate cysts from Central Europe, Norway, Canada, Africa, Papua New Guinea, Australia, and USA. The stratigraphical coverage of 45 of these papers has been summarised in Figure 6. Some of these papers require explanatory comments with respect to the dating and stratigraphical position of the sections and samples studied. These papers are commented below.

Of European studies, only those papers containing a

Lower Cretaceous dinoflagellate cyst zonation or those published after 1987 are commented upon. Most biostratigraphical dinoflagellate studies published on material from north-west Europe (before 1987) were recently compiled and reviewed by Heilmann-Clausen (1987, figs 3–4; p 11–18).

Several of the published papers used as reference for the present stratigraphy are of older date or based on information from well or outcrop sediments with very limited or no stratigraphical information from macrofossils. Not all of the references are equally well located stratigraphically or relevant to East Greenland. The rank-

Hau- teri- vian	Barremian	Aptian	Albian	Cenomanian			
EL		E L	E M L		Davey, 1988 ▶ Helby et al., 1987 Morgan,1980	Papua New Guinea Australia Australia	
					Uwins & Batten, 1988 Below, 1981	Libya Morocco	Africa
					Duxbury, 1977 Davey, 1979b Rawson & Riley, 1982 Heilmann-Clausen, 1987 Costa & Davey, 1992 Prössl, 1990 Harding, 1990 Lister & Batten, 1988	England North West Europe North Sea Area North Sea + N.W. Europe England + North Sea N.W. Germany England & Germany S.E. Egland	Europe
-					Arhus et al., 1990 Thusu, 1978 Aarhus et al., 1986 Aarhus et al., 1986 Ofstad, 1983 Costa in Ofstad, 1981 Arhus, 1991	Barents Sea Arctic Andeya Offshore south Offshore south Offshore south Arctic	Norway
					Banerjce & Davies, 1988 Pocock 1962 Davey 1969 & 1970 Singh, 1964 Brideaux, 1971 Singh, 1971 Singh, 1973	Edmonton Embayment Alberta Saskatchewan Central Alberta Central Alberta Peace River Area Peace River Area	Western Canada
					Pocock, 1976 Brideaux, 1977 Brideaux & Myhr, 1976 Brideaux & McIntyre, 1975 Doerenkamp et al., 1976	Arctic District of MacKenzie District of MacKenzie District of MacKenzie Banks Island	Arctic Canada
				+,	May, 1979 May & Stein, 1979 Bint, 1986 Nichols & Jacobson, 1982	Alaska Alaska Western Interior Wyoming	USA
-					Williams, 1975 Bujak & Williams, 1978 Bujak et al., 1989	Offshore Offshore Offshore	Eastern Canada
					 Millioud et al., 1975 Williams, 1977 Williams & Bujak, 1985 	World - wide	
_				-	Piasecki, 1979 ► Schiøler, in press Present study	Milne Land Kangerdlugssuaq area 72°N - 76°N	East Greenland

Fig. 6. Approximate stratigraphical coverage of most published dinoflagellate cyst studies of the Hauterivian to Cenomanian in north-west Europe, Arctic Norway, Canada, Greenland and selected studies from Australia, Papua New Guinea, Africa and USA.

15

ing used below is therefore arranged so that the publication with the best documented age evidence is placed first followed by decreasing reliability with respect to precise dating. This ranking is also used for discussions of ages and correlation in the sections on 'Dinoflagellate cyst zonation in East Greenland' and on 'Systematic palynology'.

Speeton, England; Duxbury, 1977

Duxbury described the dinoflagellate cyst content for the ammonite-dated Berriasian to early 'middle' Barremian deposits of the Speeton Clay of Speeton (for Great Britain, a threefold division is used for the Barremian). Five zones (A to E) was erected for the Berriasian to upper Hauterivian (variabilis Zone) whereas the eight younger samples were dated as late Hauterivian to early 'middle' Barremian. The two youngest samples represent the Cement Beds (MB) of early 'middle' Barremian age, the underlying samples represent the Lower B1 Bed (early Barremian) to which *Pseudoceratium anaphrissum* (as *Aptea anaphrissa*) was confined (Duxbury, 1977, p. 60).

Duxbury's Zone E represents the variabilis ammonite zone which Rawson et al. (1978) placed in the uppermost Hauterivian. Following Kemper et al. (1981) the Hauterivian – Barremian stage boundary is now placed below the variabilis Zone.

England and North Sea wells; Costa and Davey, 1992

Costa and Davey published the stratigraphical range of numerous index Cretaceous dinoflagellate cysts obtained from 'accurately' ammonite-dated sediments, representing the Cretaceous stages in England and the North Sea.

North-west Europe; Davey, 1979b

Davey erected an interval dinoflagellate cyst zonation for the Portlandian (Jurassic) to Barremian of north-west Europe. Based on his observations from the Speeton Clay section (Davey, 1974), he assigned the *Pseudoceratium anaphrissum* Subzone (as *Doidyx anaphrissa*) a late early Barremian to late 'middle' Barremian age, based on the last occurrence of *P. anaphrissum* in the 'middle' Barremian Cement Beds. Duxbury (1980) and Harding (1990b) questioned Davey's (1974; 1979b) recording of this species from the Cement Beds. According to these authors the last occurrence of this species is in the older Lower B Beds at Speeton and the age of the *P. anaphrissum* Subzone should therefore be early Barremian.

England & Germany; Harding, 1990b

Harding correlated the European boreal Barremian based on dinoflagellate cyst data from one cephalopod dated German section (Gott claypit, Sarstedt) and four English sections (Speeton (ammonite dated), Alford, Hunstanton and Warlingham). Rawson & Mutterlose (1983, p 137) and Harding (1990b, p. 8–9) mentioned that the organic rich lower Barremian Bed LB1 at Speeton may be equivalent to the organic rich German Hauptblätterton. The latter was dated by Mutterlose (1983; 1984) as early Barremian based on cephalopods. The Middle B Beds and the Upper B Beds, which at Speeton overlie the Early Barremian Lower B Beds, have been assigned a late Barremian age.

North-west Germany; Prössl, 1990

Prössl established a zonation for the lower Hauterivian to upper Turonian sediments from the well Konrad 101 in north-west Germany. Prössl used the British threefold division of the Barremian in his range-chart (table 5) but elsewhere (p. 95) follows the twofold division, defined by Mutterlose (1983), where the bitumen rich 'Blatterton' constitutes the major part of the lower Barremian. The 'middle' Barremian is included in the upper Barremian. The lower–upper Barremian boundary in the Konrad 101 well is defined (Mutterlose, 1983; Mutterlose & Harding, 1987a) by the presence of the belemnite *Oxyteuthis brunsvicencis*.

North Sea wells and north-west Europe; Heilmann-Clausen, 1987

Heilmann-Clausen described the dinoflagellate cyst distribution from the uppermost Jurassic (Volgian) to upper Albian – Upper Cretaceous in wells from the North Sea. Most of the data are from ditch cuttings but sidewall cores and a few cores form part of the investigated material. Core samples are from the Tuxen Formation (upper Hauterivian? to 'middle' Barremian), Sola Formation ('middle' Barremian? to lower to upper Albian) and the Rødby Formation (Albian). Only rare upper Hauterivian ammonites were recorded from the cores.

As a reference for the dinoflagellate data from the investigated wells, Heilmann-Clausen compiled a very useful range-chart (fig. 4) for 116 stratigraphical important dinoflagellate cyst species. This range-chart was based on information from most (43 papers) published dinoflagellate studies of the Lower Cretaceous in northwest Europe (before 1987), of which 27 papers described ammonite-dated sections.

It should be noted that Heilmann-Clausen, to facilitate

comparison with the Speeton section in eastern England, used the British three-fold division of the Barremian stage, where the 'middle' Barremian is typified by the Cement Beds (MB Beds).

South-east England; Lister & Batten, 1988

Stratigraphical information on dinoflagellate cysts from the Weald Clay (uppermost Barremian) and Lower Greensand (Aptian) deposits was presented by Lister & Batten (1988) from a borehole section in southern England. The zonation established by Lister & Batten was correlated with the ammonite zonation from the area. It has been difficult to correlate Lister & Batten's (1988) zonation with the zonation from East Greenland due to the dominance of brackish water dinoflagellate cysts, especially in the Weald Clay.

North Sea area; Rawson & Riley, 1982

Rawson & Riley's (1982) zonation scheme covering the Oxfordian (Jurassic) to the Albian was modified from unpublished data from Robertson Research Ltd (1978). Rawson & Riley only published the names of the zones and the zonation may be perceived as informal due to the lack of definitions. The *Pseudoceratium anaphrissum* (as *Doidyx anaphrissa*) Subzone is, as in Davey (1979b), described as 'middle' Barremian, but should, for the reasons mentioned above, be of an early Barremian age.

Western Canada; Pocock, 1962

This early work on material from the Lower and Upper Mannville Group of Alberta and Saskatchewan (according to Pocock, 1962, p. 29, Berriasian to Aptian or slightly younger) only includes stratigraphical information on a few dinoflagellate species. Pocock (p. 29) gave the 'quartz sand' member from the Lower Mannville Group a Barremian age whereas Mellon & Wall (1963) and Mellon (1967) indicate an early to middle? Albian age for this member. Pocock (p. 29) referred the 'calcareous' member of the Lower Mannville Group to the upper Barremian. However Mellon & Wall (1963) and Mellon (1967) assigned a middle Albian age. Data from Brideaux & McIntyre (1975) and Brideaux (1977) indicate that the 'calcareous' member could be as old as late Aptian and as young as early Albian. The more recent studies therefore suggests that the ages of these members are younger than given by Pocock (1962).

Western Canada; Brideaux, 1971

The middle and upper Albian sections described from Alberta (Brideaux, 1971) are all subsurface sections penetrating the Upper Mannville Group (same middle Albian interval as Singh (1964) studied for spores and pollen) and the Lower Colorado Group (upper Albian). Reference to species ranges has been obtained from the systematic chapter of Brideaux's paper. His composite range-chart (text-figure 6) also includes data from previous work.

Western Canada; Davey, 1969, 1970

In Davey's (1969, 1970) papers on Cenomanian noncalcareous microplankton, six Albian-Cenomanian samples, representing the Lower and Upper Colorado Group from a borehole in Saskatchewan, were examined for dinoflagellate cysts. Davey (1970, p. 394) placed the Albian-Cenomanian boundary just below sample Sas 890 which dated the samples Sas 1084, Sas 1023 and Sas 967 as Albian, sample Sas 890 as early Cenomanian, and samples Sas 835 and Sas 805 as middle to late Cenomanian. According to Singh (1983, table 7) recent research indicates that Davey's ages (1970, p. 394) are in error. Singh reassigned them to the following ages: Sas 1084 and Sas 1023 late Albian, Sas 967 and Sas 890 Cenomanian, Sas 835 and Sas 805 early Turonian. It should be noted that the older ranges of some of these species interpreted by Singh (1983) are incorrect as they are based on caved specimens (Davey, personal communication 1992).

Western Canada; Banerjce & Davies, 1988

Banerjce & Davies (1988) studied the Barremian – lower? Aptian Ellerslie Formation and Ostracode Zone of the Manville Group located in the Edmonton Embayment, Alberta. The restricted marine to brackish conditions strongly influence the dinoflagellate cysts distribution in the deposits.

Arctic Canada; Brideaux & McIntyre, 1975

Brideaux & McIntyre (1975) discussed the dinoflagellate cyst stratigraphy from a composite surface section along the Horton River, District of MacKenzie. The section includes the Langton Bay Formation, composed of the older Gilmore Lake Member (Apian), the younger Crossley Lakes Member (Aptian to middle Albian) and the Horton River Formation (middle Albian).

Brideaux & McIntyre (1975, p. 9) mention that the basal part of the Crossley Lakes Member could be as old

as Hauterivian and as young as Aptian based on the presence of the dinoflagellate cyst species *Tenua hystrix*, *Muderongia asymmetrica*, *M. tetracantha* and *Circulodinium brevispinosum*. However, they conclude that the lower part of the Crossley Lakes Member must be assigned to the Aptian because the spore and pollen data from the underlying Gilmore Lake Member indicate an Aptian age.

The Upper part of the Crossley Lakes Member is, according to Brideaux & McIntyre (1975), no older than early Albian and no younger than middle Albian, because they consider the dinoflagellate cyst and spore assemblages from the younger Horton River Formation to be of middle Albian age.

The few ammonites recorded from the section along the Horton River are fragmented but suggest an Albian age (Brideaux & McIntyre, 1975, p. 7).

Offshore Eastern Canada; Williams, 1975

Based on the stratigraphic ranges of dinoflagellate cysts, Williams erected a zonation for Mesozoic and Cenozoic strata in wells on the Scotian Shelf and on the Grand Banks. All the data presented in this paper are from subsurface sections, without macrofossil control, and therefore tentatively dated, according to Williams & Bujak (1985, p. 869).

Offshore Eastern Canada; Bujak & Williams, 1978

This paper slightly modified the zonation of Williams (1975) and is based on data from wells on the Scotian Shelf and Grand Banks. The ages were based on comparison with dinoflagellate assemblages primarily from European outcrops, and with ostracod and foraminiferal datings from the wells offshore eastern Canada.

According to Williams & Bujak (1985, p. 869) the "Lower Cretaceous dinoflagellate assemblages from the Scotian Shelf are most similar to coeval assemblages from southern England, whereas those from northeastern Grand Banks are more similar to those from the Speeton Clay of north-east England. The Albian and Upper Cretaceous assemblages are generally similar to those from France and England."

Australia; Morgan, 1980

Morgan described the dinoflagellate cyst content from the Lower and 'Middle' Cretaceous from conventional cores taken all over Australia. Morgan divided the Aptian to Cenomanian into three microplankton zones and nine subzones.

Australia; Helby et al., 1987

This paper described the stratigraphic range of Mesozoic dinoflagellate cysts from more than 300 wells (mainly core and side-wall core samples) from Australia and Papua New Guinea. The Barremian to Albian stages have been divided into seven dinoflagellate zones, which are parts of the *Muderongia* and *Heterosphaeridium* superzones.

Papua New Guinea; Davey, 1988

Davey established a palynological zonation of the uppermost Middle Jurassic to the Lower Cretaceous of Papua New Guinea. Two zones were proposed for the upper Hauterivian to the lower Aptian and correlated with the work of Helby *et al.* (1987).

'World-wide'; Millioud et al., 1975

This paper includes stratigraphic range charts of selected Cretaceous (Berriasian to Maastrichtian) dinoflagellate cysts, without other comments. The ranges probably represent world-wide ranges. According to the introduction given by Evitt (1975, p. 1) the paper focuses on ranges of important dinoflagellate cysts in space and time.

'World-wide'; Williams & Bujak, 1985

Williams & Bujak (1985) discussed all previously published dinoflagellate zonations for the global Mesozoic and Cenozoic. Additionally they present the 'world-wide' (excluding the Tethyan Realm) total ranges of 385 Mesozoic and Cenozoic species on fig. 19, whereas the ranges of selected species (representing the same time-span) from the Tethyan Realm were presented on fig. 20.

Williams & Bujak (p. 850) mention that they are aware of provincialism in dinoflagellates, but that the "lack of detail at the present time prevents delineation of most provincially or latitudinally restricted taxa. This results in part from the scarcity of detailed paleoecological studies on dinoflagellates".

Remarks

The comments given to the papers above illustrate that very few palynological stratigraphic works outside central Europe have been 'accurately' dated by macrofossils. The present tentative dating of the sequence from East Greenland has therefore, where possible, been dated using correlations with these ammonite-dated works. The Barremian sequence in this study is mainly dated by correlation with the dinoflagellate assemblages described from the ammonite-dated Speeton section, England (Davey, 1974, 1979b; Duxbury, 1977, 1980; Harding, 1990b; Costa & Davey, 1992) whereas dinoflagellate species not reported from Speeton are correlated with cephalopod dated sections in north-west Germany (Harding, 1990b; Prössl, 1990) and with sections with no or almost no macrofossil control in Norway (Aarhus *et al.*, 1986; Århus *et al.*, 1990;), Africa (Uwins & Batten, 1988), Canada (Brideaux, 1977; Brideaux & Myhr, 1976) and Australia/Papua New Guinea (Morgan, 1980; Helby *et al.*, 1987; Davey, 1988).

The Aptian sequence in this study is mainly dated by correlation with the dinoflagellate assemblages described from macrofossil-dated sections in England (Duxbury, 1983; Lister & Batten, 1988; Costa & Davey, 1992), north-west Germany (Davey, 1982a; Prössl, 1990) and France (Davey & Verdier, 1974) but other sections (with no or almost no macrofossil control) in Norway (Aarhus et al., 1986; Århus, 1991), Canada (Brideaux, 1977; Brideaux & McIntyre, 1975; Brideaux & Myhr, 1976; Doerenkamp et al., 1976), Africa (Uwins & Batten, 1988) and Australia/Papua New Guinea (Morgon, 1980; Helby et al., 1987; Davey, 1988) contain stratigraphically important dinoflagellate species with almost the same range as in East Greenland.

The Albian sequence in this study is mainly dated by correlation with the dinoflagellate assemblages described from macrofossil-dated sections in north-west Germany (Prössl, 1990), France (Davey & Verdier, 1971; 1973) and England (Costa & Davey, 1992) but sections with no or almost no macrofossil control in Canada (Brideaux, 1971, 1977; Singh, 1971; Brideaux & McIntyre, 1975; Brideaux & Myhr, 1976; Doerenkamp *et al.*, 1976), Alaska (May, 1979; May & Stein, 1979), Norway (Århus, 1991) and Australia/Papua New Guinea (Morgan, 1980; Helby *et al.*, 1987) all contain stratigraphically important species with almost the same range as in East Greenland.

Samples and methods

Samples

The Lower Cretaceous samples analysed in the present biostratigraphic study were collected during field work carried out by the Geological Survey of Greenland (GGU) in the summers of 1986 and 1987 in the search for hydrocarbons, in onshore areas of East Greenland (72° – $76^{\circ}N$) (Marcussen *et al.*, 1987, 1988).

Several examined sections or samples were thermally affected beyond the level of palynomorph preservation. Dinoflagellate cysts are recorded from 192 Lower Cretaceous samples, representing 40 sections of 1 to 470 metres thickness. The sections are situated on Hochstetter Forland in the north, to Traill \emptyset in the south (Fig. 2; Table 1, the sections are numbered 1 to 40). Most (37) of the sections are surface outcrops whereas 3 sections are subsurface represented by slim cores from shallow wells drilled by GGU helicopter transportable drilling equipment.

Preparation

Palynological preparation and studies were carried out at GGU. Palynomorphs were extracted from 20 g of sample by modified standard preparation techniques. The bulk of the minerals was dissolved by hydrochloric and hydrofluoric acids. A first slide was made after this treatment. A second slide was made of the organic residue after sieving using a 20 micron nylon mesh. A third slide was made after oxidation (3 to 5 minutes) with fuming nitric acid, followed by washing with a weak potassium hydroxide solution. The oxidation was carried out in order to clean the sample of minor amorphous kerogen particles and pyrite. Finally palynomorphs were separated in most samples from coal particles and woody material using the method described by Hansen & Gudmundsson (1978).

After each of the steps mentioned above the organic residues were mounted in a permanent medium Eukitt R (produced by O. Kindler, Germany).

Depository of material and analyses

The palynological slides were studied with transmitted light using an Olympus BH-2 microscope (BHT 202120). All the coordinates in the plate text refer to this microscope. England finder index corners: Z 75 4 = 2.2-174.9; Z 1 3 = 1.4-102.0; A 1 1 = 25.7-101.9; A 65 2 = 26.2-164.8, center: O 38 = 12.9-138.4. The S.E.M. observations were carried out on oxidised organic material, sieved, strew mounted and Au-coated using a Phillips

Scanning Electron Microscope at the Geological Institute, University of Copenhagen.

The illustrated dinoflagellate cysts with MGUH numbers are kept in the type collection of the Geological Museum of the University of Copenhagen. The additional palynological preparations from the East Greenland samples are housed at the Geological Survey of Greenland where they are accessible for examination.

At least 300 dinoflagellate cysts or cyst fragments, were counted from the sieved, oxidised or gravitationseparated slides in order to obtain the relative percentage of the species content. Rare species recovered after the counting are shown as very rare (less than 0.5%). Unidentifiable dinoflagellate cysts often constituted 5 to 10 percent.

The TAI (Thermal Alteration Index) evaluation was determined from the sieved slide before oxidation.

Due to the very sparse macrofossil content and the rather homogeneous lithology, the stratigraphical correlation of the geographically widespread 40 sections is based solely on the first and the last occurrences and acme of stratigraphically important dinoflagellate species.

Reworked dinoflagellate cysts species are seldom recorded by their different state of preservation but rather on their Jurassic and/or lowermost Lower Cretaceous origin. Reworked species constitute a minor percentage of the examined material, but are included in the counting.

Additional to the material from East Greenland two Lower Cretaceous sections from Arctic Canada were studied. Dinoflagellates from 5 samples from the South Sabine section on Melville Island and from 15 samples from the Lost Hammer section on Axel Heiberg Island were examined for comparison. The Canadian material was palynologically prepared for and kindly placed at my disposal by the Geological Survey of Canada (GSC), Institute of Sedimentary Petroleum Geology (ISPG), Calgary, Canada.

Palynology of the Barremian to Albian sequence

Composition of the organic material, reworking and maturity

Well preserved dinoflagellate cysts dominate the palynomorph assemblages throughout the sequence and in the present study 176 dinoflagellate cyst species were recorded. Saccate pollen and other miospores occur consistently in low numbers. A slightly higher content of miospores was recorded only in section 30. Acritarchs, other algae and miscellaneous palynomorphs are rare.

Reworked specimens of Jurassic and lowermost Cretaceous dinoflagellate cysts constitute a minor percentage of the assemblages in the examined material. These specimens were not identified by their divergent state of preservation but rather by their known stratigraphic ranges.

The organic material is dominated by palynomorphs and by brownish to black woody material, amorphous organic material constitutes a minor part. No clear stratigraphical or regional variation in composition of the organic material was observed during the study and no attempt was therefore made to carry out any organic facies analyses.

The organic material is thermally immature to mature with respect to oil generation. The Thermal Alteration Index (TAI) is -2 to +3. Chemical analyses of the organic matter yielded Total Organic Carbon (TOC) values of 0.5 to 5.0 wt. %, whereas the S_2 values (the maximum amounts of hydrocarbon which can be generated if the sediment is submitted to pyrolysis) are too low (0.1 to 1.0 mg HC/g rock) to have potential as source-rock for oil.

Diversity

The diversity of dinoflagellate cyst species as measured by the number of recorded species per sample varies from 9 to 46 (Enclosure 2). The diversity is relatively high (18–30 species) in samples assigned an earliest Barremian age. The highest diversity (more than 40 species) is recorded in samples assigned a latest Barremian to earliest Aptian age. This is followed by a low diversity interval (9–25 species) of late early Aptian to early Albian age. In the middle Albian the diversity increases (30–40 species). Finally in the upper part of the studied succession, assigned a late Albian age, the diversity is again relatively low and stratigraphically uniform (15–25 species; Enclosure 2).

The low diversity interval in sediments assigned a late early Aptian to early Albian age correlates with the low relative sea-level of the same age described by Haq *et al.* (1986). This is in contrast to the relatively low diversity interval of late Albian age (Enclosure 2), which corresponds to a relatively high sea-level (Haq *et al.*, 1986).

Dominant and frequent species

Barremian

Oligosphaeridium? asterigerum is common in the lowermost Barremian sediments, whereas Muderongia australis dominates a thin zone in the same interval (Enclosure 2). Pseudoceratium anaphrissum and Muderongia aff. M. simplex microperforata are common to very abundant in the higher parts of the lower Barremian. Pseudoceratium toveae sp. nov. and Circulodinium aff. C. attadalicum are common in the upper Barremian, whereas Cribroperidinium muderongense is very abundant in a restricted interval in the uppermost Barremian.

Aptian

Circulodinium aff. C. attadalicum is very abundant in the lowermost Aptian whereas Vesperopsis longicornis and Chlamydophorella trabeculosa are common to very abundant in sediments considered to belong to a higher level of the lower Aptian. Oligosphaeridium complex is very abundant in the higher parts of the lower Aptian to the lower parts of upper Aptian. Senoniasphaera microreticulata is very common in the uppermost Aptian to the lowermost Albian.

Albian

Circulodinium brevispinosum and Vesperopsis longicornis are common to abundant in the lower Albian. Circulodinium sp. 1 is very abundant in the lowermost parts of the upper Albian. Rhombodella paucispinosa and Subtilisphaera kalaalliti sp. nov. dominate the assemblages in the middle and the uppermost Albian; Ovoidinium? sp. 1 is quite common in the upper part of this interval.

Chlamydophorella trabeculosa, Oligosphaeridium complex and Spiniferites spp. are common to abundant throughout the major part of the studied sequences. Odontochitina operculata, Palaeoperidinium cretaceum and Sentusidinium sp. 1 are common to abundant in most of the samples tentatively considered to belong to the upper Barremian to upper Albian.

Possible low salinity indicators

Palaeoperidinium cretaceum constitutes 10 to 40% of the dinoflagellate cyst assemblage in the upper Aptian to upper Albian. Abundant *P. cretaceum* may according to Harding (1990a) indicate low-salinity environments. Another possible low-salinity indicator is abundant Vespe21

ropsis mayi which constitutes 5 to 25% of the assemblage in the lower and middle Albian. *Vesperopsis mayi* was described from the Western Interior, U.S.A. by Bint (1986), who recorded the species throughout the Kiowa Formation, dated as early late Albian. *Vesperopsis mayi* is most common in the upper part of the Kiowa Formation. According to Scott (1977, fig. 12) this part of the formation was deposited under open sea to shoreface and bay conditions.

The abundance of *P. cretaceum* and *V. mayi* in the lower to middle part of the Albian in East Greenland could therefore indicate restricted marine conditions. However, the corresponding low diversity (approximately 10 species) of the assemblages reported by Harding (1990a) is not found in the East Greenland assemblages.

Provincialism

Published studies of Arctic Canadian and Boreal European dinoflagellate cyst assemblages illustrate that these Lower Cretaceous floras differ slightly. The dinoflagellate cyst assemblages from East Greenland seem to be almost identical to assemblages from offshore Norway and show several similarities with the assemblages previously described from north-west Europe and show several other similarities with Canadian assemblages. However, it is remarkable how some of the assemblage characteristics from East Greenland are comparable with those from Australia and Papua New Guinea in the southern hemisphere.

According to palaeogeographic maps of the Early Cretaceous of the North Atlantic no apparent land barriers existed to have an influence on the mixing of Arctic and Boreal dinoflagellate cyst assemblages. The geographically restricted occurrence of the species may therefore have been controlled by differences in salinity, temperature or current patterns between the regions.

Pseudoceratium anaphrissum, which is an important stratigraphic marker for the lower Barremian black shale facies in north-west Europe, Norway and East Greenland, is apparently absent in Arctic Canada and probably also in Eastern Canada. *Tubotuberella uncinata* (lower Barremian) is only recorded from East Greenland, Arctic Canada and north-west Europe, where it is very rare. *Batioladinium longicornutum*, is common in Hauterivian to Barremian deposits in north-west Europe, Norway and East Greenland but is very rare in Arctic Canada and not reported from Eastern Canada. *Pseudoceratium nudum* (Barremian to lower Aptian), which is common in East Greenland, Norway and Arctic Canada, is very rare in north-west Europe and apparently absent in Eastern Canada. The new species *Pseudoceratium toveae* (Barremian), recorded from East Greenland, offshore Norway and Arctic Canada (unpublished data 1989) has not been reported from north-west Europe, except offshore Norway. However the closely related species *Pseudoceratium weymouthense* Helby, 1987 occurs in the uppermost Late Jurassic and lowermost Early Cretaceous in Australia.

Senoniasphaera microreticulata (upper? Aptian to middle Albian) has not been reported from north-west Europe or from the southern hemisphere, whereas it seems to be a good stratigraphical marker in offshore Norway, Arctic Canada and East Greenland. *Pseudoceratium expolitum* (middle to upper Albian) is also very rare in Europe except offshore Norway, Arctic and Eastern Canada and East Greenland where it is common and stratigraphically useful.

Chichaouadinium vestitum (middle to upper Albian) and *Wigginsiella grandstandica* (lower part of upper Albian) has not been recorded from areas outside North America and East Greenland.

Ovoidinium? sp. 1 has only been recorded from offshore Norway and East Greenland. It is common to very abundant in the uppermost Albian to lowermost Cenomanian.

The combined dominance of *Rhombodella paucispinosa* and *Subtilisphaera kalaalliti* sp. nov. in upper Albian sediments in East Greenland seems to be a local phenomenon.

Dinoflagellate cyst zonation in East Greenland

The composite range chart (Enclosure 2) shows the ranges of species from 74 selected samples from 15 of the studied sections and the zonation based on their distribution.

The age determinations in the present study are almost exclusively based on dinoflagellate cyst ranges described in the present chapter. No other independent dating is available, except from those discussed in the chapter on 'Comparison with previous macrofossil ages'. The ages given should, therefore, be regarded as tentative.

The zonation is based on the ranges and acmes of the stratigraphically important species (Fig. 8, Enclosure 2). Five zones (I-V) are subdivided into 13 subzones (Fig. 7). Every zone and subzone is defined by the two lowest and/or highest occurrences of taxa, and follows the definition for an interval zone proposed in the 'North American Commission on Stratigraphic Nomenclature' (1983). Zones I and V and Subzone I1 are concurrent range zones; Zone II and III and Subzones I2, I3, III2, III4, IV2, IV1, V2 and V3 are interval zones; Zone IV and Subzone III1 and IV1 are partial range zones; Subzones III3 and V4 are taxon range zones. The common to dominant species listed under 'Characteristic species' are those comprising more than ten per cent of the dinoflagellate cyst assemblage. The species listed as very rare to present constitute less than ten per cent of the dinoflagellate cyst assemblage.

The numbers in parentheses following species listed in 'Characteristic species' refer to the species position on the composite range-chart (Enclosure 2). The letters following these numbers are 'F', first occurrence in zone, 'FB', first occurrence at the base and 'FT', a first occurrence at the top of the zone, 'L', last occurrence within the zone, 'LT', last occurrence at the top and 'LB' last occurrence at the base of the zone. Species which are not followed by a parentheses have not been recorded from the sections included in the composite range-charts (Fig. 8, Enclosure 2). Previously published Lower Cretaceous zonations used for comparison are illustrated on Fig. 9.

I. Batioladinium longicornutum Zone

Age. Late Hauterivian? to late Barremian.

Definition. Batioladinium longicornutum has its last occurrence at the top of the zone. The base of the zone is defined by the first occurrence of Muderongia australis.

Subdivision. The B. longicornutum Zone is subdivided into three subzones; (1) Nelchinopsis kostromiensis Subzone, (2) Pseudoceratium anaphrissum Subzone and (3) Pseudoceratium toveae Subzone.

Thickness and distribution in East Greenland. The maximum known thickness of the *Batioladinium longicornu*tum Zone is 140 m. It is represented in 15 sections situated on Hochstetter Forland, Shannon, Kuhn Ø and Wollaston Forland, in the northern part of the area studied (Fig. 2, Enclosure 1).

I 1. Nelchinopsis kostromiensis Subzone

Age. Late Hauterivian? to early Barremian.

Definition. Nelchinopsis kostromiensis has its last occurrence at the top of the subzone. The base of the subzone is defined by the first occurrence of *Muderongia australis* which, according to Århus *et al.* (1990), Helby (1987) and Davey (1988) has a relatively short stratigraphic range from Hauterivian to Barremian in the Barents Sea, and in Australia and Papua New Guinea, respectively. However older exposures of the dark mudstone sequence do not occur on East Greenland. The dark mudstones rest upon the middle to upper Valanginian Rødryggen Member (Surlyk, 1978a).

Characteristic species. The two stratigraphically important species Muderongia australis (27, F, L) and Nelchinopsis kostromiensis (4, LT) are common to dominant (Fig. 8, Enclosure 2) while Batioladinium longicornutum (6), Gochteodinia villosa multifurcata, Gonyaulacysta perforobtusa (26, F, L), Hystrichosphaeridium arborispinum (35, F), Leptodinium? hyalodermopse (38, F), Pseudoceratium anaphrissum (28, F) and Tubotuberella uncinata (44, F, L) are very rare to frequent in the subzone.

Thickness and distribution. The subzone occurs in 26 m of section 10 and 45 m of section 18, and in two samples from the lower part of sections 9 and 21 (Enclosure 1). All four sections are from Kuhn Ø and Wollaston Forland in the northern part of the area studied (Figs 2 & 5).

Geological setting. Sediments belonging in the lower boundary of the *N. kostromiensis* Subzone are not exposed at sections 9 and 18. The dark mudstone sequence of the subzone in sections 10 and 21 rests on the middle to upper Valanginian Rødryggen Member (Surlyk, 1978a).

Lithology. Dark mudstone sequence with scattered yellow calcareous kidney shaped concretions less than 15 cm in diameter.

Discussion. A dinoflagellate cyst assemblage very similar to that of the *N. kostromiensis* Subzone has recently been reported as Hauterivian – lower Barremian from the Barents Sea by Århus *et al.* (1990).

The dominance of the species *Muderongia australis* in the middle part of the subzone may be of stratigraphical importance. A similar acme has been reported from the Hauterivian uppermost part of Rurikfjeldet Member at Spitsbergen and from the Hauterivian – lower Barremian in the Barents Sea by Århus *et al.* (1990). *Muderongia* *australis* was originally described from Barremian deposits in Australia by Helby (1987) and later recorded from the lowermost Hauterivian to the 'middle' Barremian in Papua New Guinea by Davey (1988).

Duxbury (1977; 1980) and Riley & Fenton (1984) recorded the last occurrence for the subzone index species *N. kostromiensis* in the *variabilis* ammonite zone. The Hauterivian–Barremian boundary was at that time placed above the *variabilis* Zone by Rawson *et al.* 1978. Following Kemper *et al.* (1981) the boundary is now placed below the *variabilis* Zone. Heilmann-Clausen

Fig. 7. Dinoflagellate cyst zonation for the Barremian to Albian in East Greenland $(72^{\circ}-76^{\circ}N)$.

(1987) and Harding (1990b) report the species as ranging from upper Hauterivian to lower Barremian in north-west Europe and Germany. Århus *et al.* (1990) report the species from the Hauterivian to lower Barremian interval in the Barents Sea. Ofstad (1983) reports this species from Valanginian and upper Hauterivian to lower Barremian offshore southern Norway. McIntyre & Brideaux (1980) recorded *N. kostromiensis* from the middle Valanginian in the District of Mackenzie, Canada, and Wiggins (1972) recorded the species from the upper Valanginian to lower Hauterivian in Alaska.

The few specimens of *Gochteodinia villosa multifur*cata in this subzone in East Greenland may be reworked. This species has previously been reported from lower Hauterivian, as *Pareodinia dasyforma*, by Duxbury (1977) whereas Thusu (1978) recorded the species as *G. villosa* from the Barremian of Arctic Norway. The species was originally recorded from the upper Ryazanian to Valanginian in Denmark by Davey (1982b).

The presence of *Gonyaulacysta perforobtusa* might indicate a Hauterivian age. Duxbury (1977) reported it from the lower to upper Hauterivian (Speeton Clay lithounits D2A to C6) whereas Heilmann-Clausen (1987) indicated a lower Barremian occurrence of the species.

Tubotuberella uncinata has only been reported from the Hauterivian and Barremian from the District of Mack-

			OPPOLES LOCASION LEDEX
		Index	surbars and the columny in which encode appear
1		Index	numbers are the columns in which species appears
		INDEX	
		NUMBER	SPRCIPS
		AGADISH	arnetha
2.5	NEI CHINODETE FORTONISIONE	10	ACHOMOSPHARRAZ NEPTUNI
2	GONVOIL OCUSTA FORTICIATO	42	APTEODINIUM CE A CRANDE
2	BOTTO ODINUM LOUSION		DATIOLADINIUM LONGICOPNUTUM
41	HEST ERTONIO HERI FOTONELISTE	32	CANNING TA BETICULATA
-	HUDERONELO TETROCONTRIO	34	CALICA PARVA
6		38	CHICHAOUADINIUM VESTITUM
2	GONYOU BOYSTO REPEOPORTUSA	17	CIRCULODINIUM AFF. C. ATTADALICUM
	NUDERUNG 18 AUSTRALIE	2.9	CIRCULODINIUM BREVISPINOSUM
2	PSEUDOCERATIUM ANAPHRISSUM	44	CIRCULODINIUM SP. 1
10	SCHONDSPHAFPAT NERTING	6	DINGODINIUM? ALBERTII
11	SIRMIODINIUM GROSSIT	45	DOROCYSTA LITOTES
121	HYSTRICHOSPHNERIDIUM OPBORISPINUM	25	ELLIPSOIDICTYUM IMPERFECTUM
13	LEPTODINIUM? HYALODERHOPSE	53	EPELLDOSPHAERIDIA SPINOSA
14	TUBOTUBERELLA UNCLNOTO	23	EXIGUISPHAERA PLECTILIS
15 1	HUDERONGIA AFF. H. STHPLES HICROPERFORMED	2	CONVAULACYSTA FASTICIATA
16	TRICHODINIUM SPEETONENSE	7	GONYAULACYSTA PERFOROBTUSA
17:	CIRCULODINIUM AFF. C. ATTADALICUM	35	HAPSOCYSTA? BENTEAE SP. NOV.
18	PSEUDOCERATIUN NUDUH	4	UESLERTONIA HESLERTONENSIS
12	PSEUDOCERATIUM TOVERE SP. NOV.	22	BYSTRICHODINIUM AFF. H. FURCATUM
20 4	UDONTOCHITING OPERCULATA	12	RYSTRICHOSPHAERIDIUM ARBORISPINUM
21	PALAEOPERIDINIUM CRETACEUM	31	LEPTODINIUM CANCELLATUM
22	HYSTRICHODINIUM AFF. H. FURCATUM	13	LEPTODINIUM? HYALODERMOPSE
23	EXIGUISPHAERA PLECTILIS	40	LETOSPHAERIDIUM ARUNDUM
2+ "	NYSTERIGYSTA VITREA	15	MUDERONGIA AFF. M. SIMPLEX MICROPERFORATA
25 "	ELLIPSOIDICTYUH IMPERFECTUM	8	MUDERONGIA AUSTRALIS
26	PSEUDOCERATIUM IVARI SP. NOV.	5	MUDERONGIA TETRACANTHA
27	VESPEROPSIS LONGICORNIS	1	NELCHENOPSES KOSTROMUENSES
28	PSEUDOCERATIUM EISENACKII	24	NYKTERICYSTA? VITREA
29 "	CIRCULODINIUM BREVISPINOSUM	50	ODONTOCHLITINA ANCALA
30 #	VESPEROPSIS HAV!	2.0	ODONTOCILLTINA OPERCULATA
31 #	LEPTODINIUM CANCELLATUM	37	ODONTOCHITINA SINGHII
32 1	CANNINGIA RETICULATA	5.1	OVOIDIN10M? SP. 1
33 1	SENONTASPHAERA HIGRORETICULATA	46	PALAEORYSTRICHOPHORA INFUSORIOIDES
34	CAUCA PARVO	21	PALAEOPERIDINIUM CRETACEUM
35 1	HAPSOCYSTA? BENTEAE SP. NOV.	4.9	PSEUDOCERATIUM AFF. P. EXPOLITUM
36	PSEUDOCERATIUN POLYNORPHUM	9	PSEUDOCEBATIUM ANAPHRISSUM
37 :	ODONTOCHITING SINGHII	28	PSEUDOCERATIUM_EISENACKII
38	CHICHAOUADINIUM VESTITUM	39	PSEUDOCERATIUM EXPOLITUM
39 1	PSEUDOCERATIUM EXPOLITUM	26	PSEUDOCERATION IVERI SP. NOV.
40 #	LITOSPHAERIDIUM ARUNDUM	18	PSEUDOCERATIUM NUDUM
+1 !	RHONBODELLA PAUCISPINA	36	PSEUDOCERATIUM POLYMORPHUM
42	APTEODINIUM GF. A. GRANDE	19	PSEUDOCERATIUM TOVEAE SP. NOV.
43	HIGGINSTELLA GRANDSTANDIGA	41	RHOMBODELLA PAUCISPINA
44 1	CIRCULODINIUM SP. 1	33	SENON LASPHAERA MICRORETICULATA
45	DOROCYSTA LITUTES	11	STRMIODINIUM GROSSII
46	PALAEOHYSTRICHOPHORA INFUSORIGIDES	17	SUUTH. ISPHAERA KALAALLITI SP. NOV.
47 :	SUBTILISPHAERA KALAALLITI SP. NOV.	16	TRICHODINIUM SPECTONENSE
48 }	XIPHOPHORIDIUM REATUR	14	TUBOTUBERELLA UNCINATA

27

30

43

52

48

XENASCUS CERATIOIDES

XIPHOPHORIDIUM ALATUM

VESPEROPSIS LONGICORNIS

VESPEROPSIS MAYI WIGGINSTELLA GRANDSTANDICA

49

50

51

52

subzones zones stages

PSEUDOCERATIUM AFF. P. EXPOLITUM

ODONTOCHITING ANCALA

RENASCUS CERATIOIDES

53 EPELIDOSPHAERIDIA SPINOSA

OVOIDINTUM? SP.

Fig. 8. The total stratigraphical range of 53 age diagnostic dinoflagellate cyst species selected from the composite range chart (Enclosure 2).

enzie, Canada by Brideaux (1977). However, one specimen has recently been recovered from a core including the lower to upper Barremian boundary at the Ahlum-1 well from the Lower Saxony Basin in Northwest Germany (Heilmann-Clausen, personal communication, 1990).

The lowermost occurrences of Pseudoceratium anaphrissum and Hystrichsphaeridium arborispinum are elsewhere indicative of higher levels of the lower Barremian where they are often abundant. An overlap in the ranges of N. kostromiensis and P. anaphrissum has only been reported from the Barents Sea (Århus et al., 1990).

The assemblages from the N. kostromiensis Subzone

contain species characteristic of both the Hauterivian and the lower Barremian. The proposal by Århus et al. (1990) that the acme of M. australis could be related to an early Barremian transgression would make it a useful lower Barremian marker. In that case the lowermost sample in section 10 could be of Hauterivian age, whereas the two upper samples from that section might be of early Barremian age.

The M. australis acme unfortunately seems to be restricted to a very narrow interval in the Arctic which can easily be missed and is recorded only in section 10 from East Greenland.

Fig. 9. Comparison of the proposed dinoflagellate cyst zonation from East Greenland and previously established zonations from Europe, Canada and the world. Geological time scale after Harland *et al.* (1990). 1. The 'middle Barremian' typified by the Cement Beds at the Speeton section in England has, according to Rawson & Mutterlose (1983), Mutterlose (1983, 1984), Mutterlose & Harding (1987b) and Harding (1990b) been included in the upper Barremian. 2. and 3. upper lower Barremian according to Duxbury

(1980, p. 137), Harding (1990, pp. 50–51) and Prössl (1990, abb. 4). 4. and 5. Duxbury's (1977) Zone E and Davey's (1979b) *Kiokansium vetusculum* Zone represent the beds C1 and LB6 at Speeton, England. These beds belongs according to Rawson *et al.* (1978) to the uppermost Hauterivian variabilis Zone whereas Kemper *et al.* (1981) placed the Hauterivian–Barremian stage boundary, below the variabilis Zone.

28

Comparison with other zones. The N. kostromiensis Subzone differs from the zones established by Duxbury (1977), Davey (1979b), Prössl (1990), Pocock (1976) and Williams (1975) for the Hauterivian - lower Barremian (Fig. 9). The most pronounced difference is the overlap of the species N. kostromiensis and P. anaphrissum in samples from East Greenland and the dominance of M. australis. Muderongia australis has been reported from north-west Germany by Prössl (1990), where it has its last occurrence in the lower Hauterivian to the middle upper Hauterivian Cymososphaeridium validum Zone (Prössl, 1990). The species Canningia cf. C. reticulata (Davey, 1979b) and Cassiculosphaeridia magna, which are common in the upper Hauterivian - lower Barremian C. magna Subzone in north-west Europe (Davey, 1979b), are rare or absent in the N. kostromiensis Subzone.

I 2. Pseudoceratium anaphrissum Subzone

Age. Early Barremian.

Definition. Interval from above the uppermost occurrence of Nelchinopsis kostromiensis to the uppermost occurrence of Pseudoceratium anaphrissum.

Acmes of the two species *P. anaphrissum* and *Hystrichosphaeridium arborispinum* occur in this interval immediately above the uppermost occurrence of *N. kostromiensis*.

Characteristic species. The three stratigraphically important species Hystrichosphaeridium arborispinum (35), Muderongia aff. M. simplex microperforata (49, F) and Pseudoceratium anaphrissum (28, LT) are common to dominant (Fig. 8, Enclosure 2) while Batioladinium jaegeri (67, F), B. longicornutum (6), Cassiculosphaeridia magna, Gochteodinia villosa multifurcata, Gonyaulacysta fastigiata (3, LT), Hystrichosphaerina schindewolfii (73, F), Hystrichodinium aff. H. furcatum (72, F), Pseudoceratium nudum (54, F) and Trichodinium speetonense (52, F) are very rare to frequent in the subzone.

Thickness and distribution. The thickness of the subzone is 30–80 m. It constitutes 30 m at section 21 where the entire subzone is exposed. Part of the subzone is present in sections 4, 9, 11, 15, 16 and 18, all from the northern part of the area on Shannon, Kuhn Ø and Wollaston Forland (Figs 2, 5, Enclosure 1).

Geological setting. Sediments belonging in the lower boundary of the *P. anaprissum* Subzone are exposed in sections 9, 18 and 21 where they rest on sediments of the *N. kostromiensis* Subzone. The lower boundary of the *P.* *anaphrissum* Subzone is not exposed in sections 4, 11, 15 and 17. In section 17 sediments of the *P. anaphrissum* Subzone rest unconformably on the Jurassic Bernberg Formation, an organic rich black mudstone sequence (Surlyk, 1977a).

Lithology. Dark mudstone sequence with scattered yellow to orange calcareous kidney shaped concretions up to 15 cm in diameter.

Discussion. According to Sarjeant (1966b), Davey (1974, 1979b), Duxbury (1980) and Heilmann-Clausen (1987) *Pseudoceratium anaphrissum* is a good marker for 'middle' Barremian in north-west Europe. Mutterlose & Harding (1987b) and Harding (1990b) reported the species only from lower Barremian in North Germany and England. The species has also been reported from the Barremian of Arctic Norway by Thusu (1978), Aarhus *et al.* (1986) and Århus *et al.* (1990).

Århus *et al.* (1990, p. 174) reported that "since *P. anaphrissum* often has an acme occurrence in the lowermost part of its range (e.g. in the commercial Tromsøyflaket wells) this may be the best practical palynological criterion for distinguishing Hauterivian and Barremian strata, although the acme occurrence is probably situated in the 'middle' Barremain *H. rude-fissicostatum* ammonite Zone according to the literature".

The picture differs in East Greenland where P. anaphrissum occurs in low numbers in the lower part of its range together with Nelchinopsis kostromienses and Muderongia australis and the acme of P. anaphrissum occurs in the upper part of its range immediately above the last occurrence of N. kostromiensis. Several observations indicate that the lowermost occurrence of P. anaphrissum is diachronous between East Greenland and the Barents Sea; i.e. the species was present in East Greenland before its appearance in the Barents Sea. This is supported by the observation that P. anaphrissum first occurs above the last occurrence of Muderongia australis in the Barents Sea, whereas the two species occur together in East Greenland. The species M. cf. M. asymmetrica (Århus et al., 1990) looks very similar to the species described here as M. aff. M. simplex microperforata. Both species have their first occurrence in the lowermost part of the P. anaphrissum acme in the Barents Sea and in East Greenland it is therefore suggested that the acme of P. anaphrissum in the middle-upper part of its range in East Greenland is the same acme as the one observed in the lowermost part of the range in the Barents Sea.

Muderongia simplex microperforata mainly occurs in the Ryazanian–Valanginian (Davey, 1982b; Heilmann-Clausen, 1987), although the species has also been recorded from the Hauterivian (Davey, 1982b; Harding, 1986). The illustrations of latest Hauterivian *M. simplex microperforata* specimens (Harding, 1986, plate 17, figs 3, 5, 8) indicate similarities with the Greenland material. Harding also notes that Davey has recorded the subspecies from the lower Barremian offshore Holland (R. J. Davey, personal communication in Harding, 1986, p. 107), which agrees with the present observation.

The upper Hauterivian – lower Barremian *Muderongia* sp. reported from Libya (Uwins & Batten, 1988, plate 34, figs 18, 19) also resembles *M.* aff. *M. simplex microperforata* from East Greenland.

The species *Gonyaulacysta fastigiata* has its last occurrence in the 'middle' Barremian at Specton (Duxbury, 1980) and in the lower Barremian of offshore South Norway (Aarhus *et al.*, 1986). This is in agreement with the present observations.

Comparison with other zones. The top of the *P. anaphrissum* Subzone, here erected for East Greenland, seems to be similar to the top of the *P. anaphrissum* Subzone (Fig. 9) erected by Davey (1979b) for north-west Europe. The tops of both subzones are defined by the uppermost occurrence of *P. anaphrissum* and occur immediately below the lowermost occurrence of *Palaeoperidinium* cretaceum. However, the base of Davey's (1979b) subzone differs slightly by being defined by the first occurrence of *P. anaphrissum*.

The Exiguisphaera plectilis Zone erected by Prössl (1990) for north-west Germany differs from the present subzone by having the first and last occurrence of *P. anaphrissum* (as Aptea anaphrissa) within the zone and by being defined by the total range of *E. plectilis*.

The *P. anaphrissum* Subzone occurs in the interval covering the upper part of the lower Barremian and differs in that way from the lower to the middle part of the upper Barremian *E. plectilis* Zone (Prössl, 1990). The *Trichodinium* aff. *T. speetonense* Zone of Arctic Canada (Pocock, 1976), the *P. anaphrissum* Peak Zone of Eastern Canada and the world-wide *P. anaphrissum* Subzone (Williams, 1975; 1977) all cover the entire Barremian and differ in that way from the present *P. anaphrissum* Subzone.

I 3. Pseudoceratium toveae Subzone

Age. Late Barremian.

Definition. The interval from immediately above the last occurrence of *Pseudoceratium anaphrissum* to the last occurrence of *Batioladinium longicornutum*. The interval contains the acme of the species *Pseudoceratium toveae* sp. nov.

Characteristic species. The four stratigraphically important species Hystrichosphaeridium arborispinum (35, L), Odontochitina operculata (70, F), Pseudoceratium toveae sp. nov. (68, FB) and Pseudoceratium nudum (54) are common to dominant in the Pseudoceratium anaphrissum Subzone (Fig. 8, Enclosure 2) while Acomosphaera? neptuni (29, LT), Batioladinium longicornutum (6, LT), Desmocysta plekta (86, F), Ellipsoidictyum imperfectum (81, F), Exiguisphaera plectilis (77, F), Hystrichodinium aff. H. furcatum (72, F), Hystrichodinium ramoides, Hystrichosphaeridium arborispinum (35, L), Atopodinium haromense (76, F), Nyktericysta? vitrea (78, F), Palaeoperidinium cretaceum (71, FB) and Pseudoceratium iveri sp. nov. (85, FT, LT) are very rare to frequent in the subzone.

Thickness and distribution. The subzone is up to 65 m thick in sections 7, 14, 17 and 21 and up to 30 m of thick in sections 1, 6, 8, 15, 16 and 19. All ten sections are from the northern part of the area: Haystack, Kuhn Ø and Wollaston Forland (Figs 2, 5, Enclosure 1).

Geological setting. Sediments belonging in the lower boundary of the *P. toveae* Subzone are exposed only in sections 15, 16 and 21 where they rest upon sediments of the *Pseudoceratium anaphrissum* Subzone. The lower boundary of the *P. toveae* Subzone is not exposed in sections 1, 6, 7, 8 and 17. Strata of the subzone rest unconformably on the uppermost Ryazanian – Valanginian Young Sund Member (Surlyk, 1978a) in section 14 and rest unconformably on the uppermost Ryazanian – Valanginian Albrechts Bugt Member (Surlyk, 1978a) in section 19.

Lithology. The subzone consist of a dark mudstone sequence with scattered yellow, eroded, calcareous, kidney shaped concretions. The lower part of the subzone contains scattered, 5–20 cm thick, calcareous bands.

Discussion. Pseudoceratium toveae sp. nov. has previously been recorded (as *P. gochtii*) from the Barremian in northern Canada (Brideaux, 1976, 1977). For further discussion on the relationship of *P. toveae* sp. nov. to *P. gochtii* see the systematic chapter.

Palaeoperidinium cretaceum has its first occurrence in the 'middle' Barremian at Speeton, England (Davey, 1979b; Duxbury, 1980). Batioladinium longicornutum, according to Davey (1979b), has its last occurrence in the top of the 'middle' Barremian. Duxbury (1980) reports the species from lowermost upper Barremian at Specton. The species has never been recorded from the uppermost Barremian in accurately dated sediments in England whereas according to Harding (1990b) and Prössl (1990) it has a last occurrence very close to the top of the upper Barremian in Germany. Heilmann-Clausen (1987, fig. 4)) regards *B. longicornutum* as a reliable top Barremian marker. The last occurrence of *Hystrichosphaerindium arborispinum* and *H. ramoides* supports the interpretation of Heilmann-Clausen (1987) that the subzone interval is of Late Barremian age.

Atopodinium haromense has its first occurrence in East Greenland in the *P. toveae* Subzone where it seems to be a good marker. The species was originally described (as *Maduradinium* sp. A) from Turonian to lower Maastrichtian offshore south-west Africa by Davey (1978). Davey (1982a) has also reported the species from the upper Aptian to the lower Albian in north-west Germany. Later the species was recorded from the upper Ryazanian to the upper Barremian in the North Sea well Adda-1 and from Ryazanian to Aptian in the North Sea well I-1, by Heilmann-Clausen (1987). Lister & Batten (1988) reported the species from the lower to upper Aptian deposits in south-east England. In 1988 the species was formally described from the upper Oxfordian to the lower Kimmeridgian (Jurassic) in England by Thomas & Cox (1988).

Nyktericysta? vitrea has its first occurrence in the upper Barremian in East Greenland which is earlier than the record of the species from the lower Aptian in south-east England by Duxbury (1983) and Lister & Batten (1988). Lister & Batten (1988) divided Duxbury's (1983) Nyktericysta? vitrea species into the two species, N.? vitrea and Australisphaera pseudovitrea. They recorded A. pseudovitrea from the upper Barremian in southern England, whereas they only recorded N.? vitrea from the lower Aptian. Both forms occur together in the upper Barremian and in the lower Aptian in East Greenland where the two species seem to grade into each other and no attempt is made to follow the taxonomic changes of Lister & Batten (1988).

The new species *Pseudoceratium iveri* has its first and last occurrence in the uppermost part of the *P. toveae* Subzone where it is a good marker species. It has not been recorded above the last occurrence of *Batioladinium longicornutum*.

Comparison with other upper Barremian zones. The P. toveae Subzone resembles the Palaeoperidinium cretaceum Subzone (Fig. 9) established for the upper Barremian in eastern England by Davey (1979b).

The major differences between the two subzones are the presence of *Pseudoceratium toveae* sp. nov., only in Greenland, and *B. longicornutum* which ranges to the top of the interval in Greenland but not in England.

The Hurlandsia rugarum – Australisphaera fragilis (pars) Zone established for the low salinity environment deposits of the upper Barremian in southern England by Lister & Batten (1988) cannot be correlated entirely to the P. toveae Subzone. The two species P. cretaceum and A. pseudovitrea have their first occurrence in both the P. toveae Subzone and in the H. rugarum - A. fragilis (pars) Zone. Batioladinium longicornutum has not been recorded from the interval in southern England. Pseudoceratium toveae sp. nov. might be present in England, as P. pelliferum with rather long horns (Lister & Batten, 1988, plate 2, fig. 4). The precise stratigraphic position of their specimen in the H. rugarum - A. fragilis (pars) Zone was not specified. The upper part of the P. toveae Subzone may be correlated with the upper part of the Impagidinium alectrolophum Zone (Fig. 9) erected by Prössl (1990) for the uppermost Barremian in north-west Germany, based on the dominance and extinction of Hystrichosphaeridium arborispinum in both zones and on the extinction of Batioladinium longicornutum at the top of both zones.

II. Pseudoceratium nudum Zone

Age. Earliest Aptian.

Definition. Interval from immediately above the last occurrence of *Batioladinium longicornutum* to the last occurrence of *Psedouceratium nudum*. The zone is not subdivided into subzones.

Characteristic species. The stratigraphically important species Circulodinium aff. C. attadalicum (53, LT) is common to dominant (Fig. 8, Enclosure 2) while Exiguisphaera plectilis (77, L), Heslertonia heslertonensis (11, L), Hystrichodinium aff. H. furcatum (72, L), Atopodinium haromense (76, L), Muderongia tetracantha (8, L), Nyktericysta? vitrea (78), Pseudoceratium pelliferum (5, L), P. nudum (54, LT), P. cf. P. retusum (88, F), Subtilisphaera perlucida (65), Trichodinium speetonense (52, L) and Vesperopsis longicornis (89, F) are very rare to frequent in the zone.

Thickness and distribution. The Pseudoceratium nudum Zone (or part of the zone) is present in sections 6, 7, 17, 19 and 33 from Kuhn Ø, Wollaston Forland and Traill Ø. The maximum thickness of the zone, 20 m, is in section 17 (Figs 2, 5, Enclosure 1).

Geological setting. Sediments of the lower boundary of the zone are present in sections 6, 7 and 17 where they rest on dark mudstone of the *Pseudoceratium toveae* Subzone.

Lithology. In section 17, the sample GGU 324167 from

the lowermost part of the *P. nudum* Zone is a dark mudstone overlain by a 0.1 to 0.5 m thick calcareous horizon. The calcareous layer (sample GGU 324268) forms a plateau, with eroded calcareous nodules (0.2-0.5 m), to the east of the section. Sample GGU 324269 is from a dark sandy mudstone at the top of the zone.

Discussion. Pseudoceratium nudum has previously been reported from the upper Hauterivian in Europe (Gocht, 1957) and from the Hauterivian to Barremian in the District of Mackenzie, Canada (Brideaux, 1977). It was not reported from the lower Aptian in France and England (Davey & Verdier, 1974; Duxbury, 1983; Lister & Batten, 1988).

Circulodinium aff. *C. attadalicum* is abundant and has its last occurrence at the top of the *P. nudum* Zone. *Circulodinium attadalicum* was previously reported from the Aptian stratotype in south-east France (Williams, 1977) and from the Hauterivian to the lower Aptian offshore eastern Canada (Williams, 1975). *Circulodinium attadalicum* is also abundant in the lower Aptian offshore eastern Canada which, according to Williams (1975), is indicative of marine transgression.

Aarhus et al. (1986) reported Canninginopsis cf. C. colliveri to be common, together with the first occurrence of Muderongia asymmetrica, in an Aptian assemblage from Andøya, Norway. Circulodinium cf. C. colliveri of Aarhus et al. (1986) is similar in size and shape to Circulodinium aff. C. attadalicum of this study and their M. asymmetrica looks very similar to Vesperopsis longicornis (Batten & Lister, 1988) Harding, 1990. The assemblage from Andøya occurs above the last occurrence of Muderongia tetracantha and may probably be correlated with the upper part of the P. nudum Zone of East Greenland.

In north-west Europe Exiguisphaera plectilis and Heslertonia heslertonensis have their last occurrences in the lower Aptian (Heilmann-Clausen, 1987) which correlate with their extinctions in the *P. nudum* Zone. *Pseudoceratium retusum* was originally reported from the Barremian and Aptian in Canada (Brideaux, 1977), whereas Lister & Batten (1988) only reported this species from the lower Aptian, which corresponds with the present observation of the occurrence of *P. cf. P. retusum* in East Greenland.

In Europe Muderongia tetracantha has only been reported above the upper Barremian from Germany by Below (1982b) but he did not illustrate the forms recorded from the upper Aptian. Outside Europe the species has been reported from Neocomian to Aptian in Canada (Brideaux & McIntyre, 1975; Poocock, 1976) and from Neocomian to lower Albian in Australia (Cookson & Eisenack, 1958; Morgan, 1980; Helby *et al.*, 1987). Davey recorded the species (as *M. tetracantha* sensu Morgan 1980) from the upper Aptian and lower Albian in Papua New Guinea. *Muderongia tetracantha* seems to range into the lower Aptian in East Greenland where is has its last occurrence in the *P. nudum* Zone. *Vesperopsis longicornis* has its first occurrence in the top of the zone immediately above the last occurrence of *M. tetracantha*.

The calcareous layer in the middle part of the zone might represent the 'medium condensed section' described from the lower Aptian by Haq *et al.* (1987). The present study shows no significant change in the dinoflagellate cyst assemblage of the zone except for *M. tetracantha* that occurs below and in the calcareous limestone and the incoming of *Vesperopsis longicornis* above the calcareous layer.

Comparison with other lower Aptian zones. The P. nudum Zone may be correlated with the lowermost Aptian Aptea plera acme Zone (now Pseudoceratium plerum acme Zone, Fig. 9) from southern England (Lister & Batten, 1988) on the basis of the first occurrence of P. retusum, the last occurrence of Heslertonia heslertonensis and the presence of Nyktericysta? vitrea in both zones. The P. nudum Zone shows some similarities with the lower part of Pocock's (1976) Subtilisphaera terrula -Muderongia sp. Zone but a more precise correlation is not possible. The lower Aptian Circulodinium attadalicum Subzone, established by Williams (1975) for offshore eastern Canada, corresponds to the P. nudum Zone. Circulodinium aff. C. attadalicum is abundant and has its last occurrence in the present zone, and C. attadalicum is abundant and becomes extinct in the Canadian subzone. Williams (1975) also reports Pseudoceratium anaphrissum from the C. attadalicum Subzone but the illustration (Williams, plate 7, fig. 9) suggests that it may be Pseudoceratium retusum which has its first occurrence in the P. nudum Zone.

III. Circulodinium brevispinosum Zone

Age. Early Aptian to early Albian?

Definition. Interval from immediately above the uppermost occurrence of *Pseudoceratium nudum* to the uppermost occurrence of *Circulodinium brevispinosum*.

Subdivision. The Circulodinium brevispinosum Zone is subdivided into the four subzones: (1) Vesperopsis longicornis Subzone, (2) Vesperopsis mayi Subzone, (3) Senoniasphaera microreticulata Subzone and (4) Leptodinium? hyalodermopse Subzone (Fig. 7). Thickness and distribution in East Greenland. The maximum thickness of the zone is 330 m. It is represented in 9 sections situated on Hochstetter Forland, Shannon, Wollaston Forland, Hold with Hope and Traill \emptyset (Figs 2, 5, Enclosure 1).

III 1. Vesperopsis longicornis Subzone

Age. 'Late' early Aptian.

Definition. Interval from immediately above the uppermost occurrence of *Pseudoceratium nudum* to immediately below the local lowermost occurrence of *Vesperopsis mayi*.

Characteristic species. The important stratigraphical species *Vesperopsis longicornis* (89, LT1) is common to dominant (Fig. 8, Enclosure 2) while *Circulodinium brevispinosum* (95, FB), *Dingodinium? albertii* (9), *Nyktericysta? vitrea* (78), *Ovoidinium cinctum* (94, FB; L) and *Pseudoceratium* cf. *P. retusum* (88) are very rare to frequent in the subzone.

Thickness and distribution. The Vesperopsis longicornis Subzone is represented by 18 m of sediment in section 32 and by single samples in sections 3 and 17. The three sections are from Shannon, Wollaston Forland and Traill \emptyset (Figs 2, 5, Enclosure 1).

Geological setting. Sediments containing the subzone rest upon dark sandy mudstone sediments containing the *P. nudum* Subzone at sections 17 and 37.

Lithology. Dark sandy mudstone, often with 2–20 cm thick sandy layers.

Discussion. The Vesporopsis longicornis Subzone is characterised by the abundance of Vesperopsis longicornis and the first occurrence of Circulodinium brevispinosum. Circulodinium brevispinosum was originally described by Pocock (1962) from the Garbutt Formation in western Canada considered by him to be Barremian to Aptian. Brideaux (1977, p. 16) discussed the age of the Garbutt Formation and assigned it to the lower and middle Albian and possibly Aptian. Brideaux & McIntyre (1975) reported the species as *Tenua* sp. A. from Aptian to middle Albian in the District of Mackenzie, Canada. Brideaux (1977) recorded the species in Aptian and Albian sediments from the same area.

Brideaux (1977, p. 16) also mentioned that one specimen of *C. attadalicum*, figured by Williams (1975, plate 2, fig. 3) from the Aptian of offshore eastern Canada, is *C. brevispinosum.* The distinction between *C. attadalicum* and *C. brevispinosum* is mainly based on ornamentation (see chapter on systematics).

Circulodinium aff. C. attadalicum is quite abundant in the upper part of its range in East Greenland and does not occur above the last occurrence of P. nudum. Circulodinium brevispinosum is not very abundant in the lower part of its range and has not been recorded together with P. nudum. In Arctic Norway, the first occurrence of C. brevispinosum has been reported from the Aptian (Thusu, 1978). In spite of the different opinions on the two species and their apparent grading into each other it is generally agreed that C. brevispinosum has its first occurrence in the lower Aptian.

The first occurrence of *Ovoidinium cinctum* in the *Vesperopsis longicornis* Subzone correlates with other lower to upper Aptian records of this species by Cookson & Eisenack (1958) and Lister & Batten (1988) whereas Helby *et al.* (1987) recorded the species from the upper Barremian to the lower Aptian in their Australian zonation.

Comparison with other lower Aptian zones. The V. longicornis Subzone may be correlated with the upper part of the lower Aptian Aptea plera acme Zone and the lower part of the Cepadinium variabile acme Zone (Fig. 9) from southern England (Lister & Batten, 1988) on the basis of the presence of Dingodinium? albertii, Nyktericysta? vitrea and the absence of Heslertonia heslertonensis in both intervals. Ovoidinium cinctum, present in this subzone, first occurs in England in the younger early Aptian – late Aptian Impagidinium alectrolophum Zone (Lister & Batten, 1988).

The Vesperopsis longicornis Subzone can be correlated with the part of the Aptian Subtilisphaera perlucida – Systematophora schindewolfii Zone (Williams, 1975) that is situated immediately above the Circulodinium attadalicum Subzone (Williams, 1975) (see also the discussion of the P. nudum Subzone above).

III 2. Vesperopsis mayi Subzone

Age. Latest early Aptian - early late Aptian?

Definition. Interval from the lowermost occurrence of Vesperopsis mayi to immediately below the lowermost occurrence of Senoniasphaera microreticulata.

Characteristic species. The two stratigraphically important species *Canningia reticulata* (103, F, LT) and *Odontochitina operculata* (70) are common to dominant (Fig. 8, Enclosure 2) while *Carpodinium granulatum* (102, F), Circulodinium brevispinosum (95), Dingodinium? albertii (9, L), Leptodinium cancellatum (101, F), Nyktericysta? vitrea (78, L) and Vesperopsis mayi (98, FB) are very rare to frequent in the subzone.

Thickness and distribution. The subzone is represented by 85 m in section 12 and approximately 100 m in section 13, both from the northern part of Wollaston Forland (Figs 2, 5, Enclosure 1).

Geological setting. Sediments of the subzone rest at section 13 on the Bernbjerg Formation (Surlyk, 1977a), a Jurassic black mudstone sequence.

Lithology. The subzone is represented by a dark sandy mudstone sequence with occasional 2–20 cm thick sandy layers.

Discussion. Vesperopsis mayi has previously been reported from the Albian in the Western Interior, USA (Bint, 1986) and the very similar species *Muderongia* asymmetrica (see the discussion V. mayi in the systematic chapter) has been reported from the Aptian, Arctic Norway (Thusu, 1978; Aarhus *et al.*, 1986). Duxbury (1983) recorded *M. asymmetrica* from the lowermost part of the Aptian in south-east England. *M. asymmetrica* has also been reported from the Aptian to lower Albian, Arctic Canada (Brideaux, 1977). The first occurrence of V. mayi in the upper part of the lower Aptian in East Greenland correlates reasonably well with previous observations.

Leptodinium cancellatum was originally described from the middle Albian from Canada (Brideaux & McIntyre, 1975) but the first occurrence in the lower to upper Aptian of East Greenland agrees with the upper Aptian first occurrence reported from north-west Germany (Davey, 1982a).

Canningia reticulata has only been recorded from the upper part of the V. mayi Subzone. The specimens from East Greenland are almost identical to the specimens of Canningia reticulata which Below (1981) reported to be abundant in upper Barremian, upper Aptian and lower Albian deposits from Morocco.

The presence of *Carpodinium granulatum* may indicate upper Aptian (Prössl, 1990). The presence of *Nyktericysta? vitrea* indicates lower Aptian (Duxbury, 1983; Lister & Batten, 1988). As discussed above, the *Vesperopsis mayi* Subzone may cover part of the lower Aptian as well as part of the upper Aptian.

Comparison with other Zones. The V. mayi Subzone is possibly a correlative with the uppermost part of the lower Aptian – upper Aptian Impagidinium alectrolophum Zone (Lister & Batten, 1988) from southern England (Fig. 9). This correlation is based on the last occurrence of *N*.? *vitrea* in both zones.

III 3. Senoniasphaera microreticulata Subzone

Age. Late Aptian to early Albian.

Definition. Interval from the lowermost occurrence of Senoniasphaera microreticulata to the uppermost occurrence of S. microreticulata.

Characteristic species. There are three stratigraphically important species Ellipsoidictyum imperfectum (81), Palaeoperidinium cretaceum (71) and Senoniasphaera microreticulata (105, FB, LT) all common to dominant (Fig 8, Enclosure 2) while Cauca parva (107, F), Circulodinium brevispinosum (95), Dingodinium? albertii (9, L), Gonyaulacysta aff. G. cassidata (106, F), Leptodinium cancellatum (101), Hapsocysta? benteae sp. nov. (109, FT) and Vesperopsis mayi (98) are very rare to frequent in the subzone.

Thickness and distribution. The complete subzone measures approximately 175 m in section 13, whereas part of it is present in sections 12 and 17. The subzone is only recorded from Wollaston Forland (Figs 2, 5, Enclosure 1).

Geological setting. Sediments of the subzone rest upon dark sandy mudstone belonging in the *Vesperopsis mayi* Subzone at sections 12 and 13. In section 17 sediments of the subzone probably rest unconformably on dark sandy mudstone of the *Vesperopsis longicornis* Subzone.

Lithology. Dark sandy mudstones with increasing abundance of sandstone layers (20–60 cm thick) in the upper part of sections 13 and 17.

Discussion. Senoniasphaera microreticulata has previously been reported from presumed middle Albian in the Barents Sea (Århus, 1991), from presumed middle Albian in the District of Mackenzie, Canada (Brideaux & McIntyre, 1975) and from presumed lower to upper Albian offshore eastern Canada (Bujak & Williams, 1978). The middle Albian range for *S. microreticulata* and *Luxadinium primulum* Brideaux & McIntyre, 1975 proposed by Brideaux & McIntyre (1975) has been questioned by Duxbury (1983, p. 71). Duxbury found a short range of *Luxadinium primulum* in the lower Albian in England, and on this basis he interpreted Brideaux and McIntyre's presumed middle Albian strata to be lower Albian. Århus (1991) also suggested a middle Albian age for *S. micro*reticulata, but Århus mentioned some conflicting data. Århus (1991, p. 13) suggested that the last occurrence of the *Circulodinium colliveri – brevispinosum* group is a stratigraphical marker for the lower Albian in core 7231/4-U-1 from the Barents Sea and in Peary Land, North Greenland. However, Århus recorded a specimen of the *C. colliveri – brevispinosum* group in the upper part of the range of *S. microreticulata*, from core 7231/4-U-1. The fact that *C. brevispinosum* specimens are recorded together with *S. microreticulata* specimens in Canada (Brideaux & McIntyre, 1975) and in the present study from East Greenland provides further support that *S. microreticulata* may indicate lower Albian.

Cauca parva has its first occurrence in the *S. microreticulata* Subzone. Davey & Verdier (1971, 1974) recorded the species from upper part of upper Aptian to upper middle Albian in south-east France. According to Heilmann-Clausen (1987) the species is rare in upper Barremian and in the lower Aptian but quite common in the middle Albian.

Hapsocysta? benteae sp. nov. (= Hapsocysta sp. (Davey, 1982a)) has its first occurrence in the uppermost Aptian in north-west Germany according to Davey (1982a). Hapsocysta? benteae has its first occurrence in the uppermost part of the S. microreticulata Subzone which may indicate that the subzone has an late Aptian to carly Albian age.

The last occurrence of *Dingodinium? albertii* in the subzone also indicates a late Aptian – early Albian age. The species is known to range up into the lowermost Albian in north-west Germany (Davey, 1982a) and uppermost Aptian in south-east France (Davey & Verdier, 1974).

Comparison with previous zones. The S. microreticulata Subzone is difficult to compare with Lister & Batten's (1988) upper Aptian zones. Senoniasphaera microreticulata has not been reported from north-west Europe. The present subzone may correlate with part of the *H.* schindewolfii – S. perlucida Zone (Fig. 9) for eastern Canada and world-wide (Williams, 1975; 1977).

III 4. *Leptodinium? hyalodermopse* Subzone

Age. Early Albian.

Definition. Interval from immediately above the last occurrence of Senoniasphaera microreticulata to the last occurrence of Circulodinium brevispinosum. Characteristic species. The two stratigraphically important species Circulodinium brevispinosum (95, LT) and Vesperopsis longicornis (89, FB2, LT) are common to dominant (Fig. 8, Enclosure 2) while Batioladinium micropodum (57, L), Cauca parva (107), Hystrichosphaerina schindewolfii (73, L), Leptodinium? hyalodermopse (38, LT), Odontochitina singhii (112, F), Pseudoceratium polymorphum (110, F) and Subtilisphaera perlucida (65, L) are very rare to frequent in the subzone.

Thickness and distribution. The lower part of the subzone is 20 m thick in section 13 and the upper part reaches a maximum thickness of 16 m in sections 2, 26 and 34. The sections are situated on Hochstetter Forland, Wollaston Forland, Hold with Hope and Traill \emptyset (Figs 2, 5, Enclosure 1).

Geological setting. Sediments of the subzone rest upon dark sandy mudstones with sandy layers belonging in the Senoniasphaera microreticulata Subzone in section 13. The L.? hyalodermopse Subzone is overlain by basalts.

Lithology. Dark mudstones with occasional sands.

Discussion. Circulodinium brevispinosum has previously been reported from the Aptian in Arctic Norway (Thusu, 1978), lower Albian in Peary Land, North Greenland and upper Aptian to lower Albian, with a single recording from middle Albian as Circulodininum colliveri – brevispinosum, from the Barents Sea (Århus, 1991). The species apparently ranges into the lower Albian in the District of Mackenzie and Edmonton Embayment, Canada (Brideaux, 1977; Banerjce & Davies, 1988).

Vesperopsis longicornis is quite abundant in the upper part of the L.? hyalodermopse Subzone, but V. longicornis, absent from the Vesperopsis mayi and the Senoniasphaera microreticulata Subzones, apparently has two acmes. The first occurs in the lower Aptian Vesperopsis longicornis Subzone, and the second in the lower Albian L.? hyalodermopse Subzone, where it also has its last occurrence.

A few specimens of *Subtilisphaera perlucida* and *Hy-strichosphaerina schindewolffi* have been recorded in the upper part of the subzone. In north-west Europe the two species have their last occurrences in the lower Albian (Heilmann-Clausen, 1987).

Leptodinium? hyalodermopse (as Rhynchodiniopsis hyalodermopsis) has its last occurrence in the mid lower Albian in north-west Germany (Prössl, 1990) just below the first occurrence of Litosphaeridium arundum and above the first occurrence of Rhombodella paucispina. Leptodinium? hyalodermopse also has its last occurrence immediately below the first occurrence of L. arundum in East Greenland. This level has been determined as the lower-middle Albian boundary based on the coinciding first occurrences of *L. arundum*, *Rhombodella paucispina* and *Chichaouadinium vestitum*. The inconsistency of the age determination from East Greenland with the age determination from Germany might be explained by a hiatus in the upper part of lower Albian in East Greenland. *Leptodinium? hyalodermopse* ranges, according to Brideaux & McIntyre (1975), into the middle Albian in Canada where the last occurrence of the species is in the middle of the range of *Senoniasphaera microreticulata*. Århus (1991) observed the same in the Barents Sea, whereas *L.? hyalodermopse* last occurs in East Greenland above the last occurrence of *S. microreticulata*.

Odontochitina singhii has its first occurrence in East Greenland in the L.? hyalodermopse Subzone. Århus (1991) recorded the species from Aptian – lower Albian to middle Albian, Spitsbergen, Norway. It has its first occurrence in the upper Albian in western Canada (Singh, 1983). Dixon *et al.* (1989) discuss their record of the species in assemblages from the Northwest Territories, Canada and propose a late middle to late Albian age for the first occurrence. The species also has been recorded from the lower to upper Albian in Australia (Morgan, 1980).

Pseudoceratium polymorphum has its first occurrence in the lower part of the subzone and ranges up to the uppermost middle Albian. The species is restricted to the Aptian and lower Albian in north-west Europe (Heilmann-Clausen, 1987). The last occurrences of Circulodinium brevispinosum and Subtilisphaera perlucida, the presence of Odontochitina singhii and the absence of the Albian species Litosphaeridium arundum and Chichaouadinium vestitum indicate a late Aptian? to early Albian age for the subzone.

Comparison with other zones. Correlation with the upper Aptian zones established by Lister & Batten (1988) for southern England is difficult. Part of the L.? hyalodermopse Subzone may be correlated with the mid to uppermost lower Albian Scriniodinium heikei Zone (Fig. 9) established by Prössl (1990) for north-west Germany based on the extinction of L.? hyalodermopse in both zones. The L.? hyalodermopse Subzone may possibly correlate with the upper part of the Aptian S. perlucida – H. schindewolfii Zone (Williams, 1977).

IV. Rhombodella paucispina Zone

Age. Early? to middle Albian.

Definition. Interval from immediately above the uppermost occurrence of Circulodinium brevispinosum to immediately below the lowermost occurrence of Subtilisphaera kalaalliti sp. nov.

Subdivision. The Rhombodella paucispina Zone is subdivided into the two subzones. (1) Litosphaeridium arundum Subzone and (2) Chichaouadinium vestitum Subzone (Fig. 7).

Thickness and distribution in East Greenland. The maximum thickness of the zone is 500 m. It is present in 6 sections situated on Shannon, Wollaston Forland, Clavering Ø and Hold with Hope (Figs 2, 5, Enclosure 1).

IV 1. Litosphaeridium arundum Subzone

Age. Early? to middle Albian.

Definition. Interval from immediately above the uppermost occurrence of *Circulodinium brevispinosum* to immediately below the acme of *Chichaouadinium vestitum*.

Characteristic species. The three stratigraphically important species Oligosphaeridium sp. 1 (108), Palaeoperidinium cretaceum (71) and Vesperopsis mayi (98) are common to dominant (Fig. 8, Enclosure 2) while Apteodinium cf. A. grande (121, F), Batioladinium shaftesburiense sp. nov. (113, FB), Bourkidinium granulatum (119, F), Chichaouadinium vestitum (114, FB), Discorsia nanna (74), Kleithriasphaeridium eoinodes (13, L), Leptodinium cancellatum (101), Litosphaeridium arundum (116,FB), Odontochitina singhii (112), Pseudoceratium expolitum (115, FB) and Rhombodella paucispina (118, FB) are very rare to frequent in the subzone.

Thickness and distribution. The subzone is 300 m thick in section 20, approximately 355 m in section 23 and 150 m in section 22. It is only represented by a few samples in sections 5, 21 and 26. The sections are distributed on Shannon, Wollaston Forland, Clavering \emptyset and Hold with Hope (Figs 2, 5, Enclosure 1).

Geological setting. Sediments containing the base of the subzone are only recorded at section 26 where they rest upon dark mudstones assigned to the Leptodinium? hyalodermopse Subzone. Sediments assigned to the L. arundum subzone rest unconformably upon sediments containing the upper Barremian Pseudoceratium toveae Subzone in section 21 and unconformably overlie a grey coarse-grained Jurassic sandstone in section 22.
Lithology. Dark mudstones with light brown calcareous concretions and cone in cone structures which contain occasional sandstone beds with small ripples and flute-marks. The subzone is overlain by Tertiary basalts in section 22.

Discussion. The coincidence that several species have their last or first occurrences at the base of the present subzone (Fig. 8) might indicate the presence of a hiatus between the *Leptodinium*? *hyalodermopse* and *Leptodinium arundum* Subzones.

Litosphaeridium arundum ranges from lower to upper Albian in north-west Europe and world-wide (Heilmann-Clausen, 1987; Williams & Bujak, 1985). Pseudoceratium expolitum, which has its first occurrence at the base of the L. arundum Subzone, has previously been recorded from middle to upper Albian of western Canada (Brideaux, 1971; Singh, 1971).

Singh (1983) reported *Bourkidinium granulatum* from the upper Aptian to lower Cenomanian of western Canada. The species was originally recorded from the upper Aptian and Albian in Australia (Morgan, 1975). It is rare in East Greenland, where it has its first occurrence in the *L. arundum* Subzone.

Rhombodella paucispina also has its first occurrence in the L. arundum Subzone and is almost always present, but rare. The species has previously been recorded from the Albian in Germany (Alberti, 1961), from the upper Aptian and lower Albian in north-west Germany (Davey, 1982a), from the uppermost Aptian to lowermost upper Cenomanian in north-west Germany (Prössl, 1990), from the middle to upper Albian in France (Davey & Verdier, 1971), middle Albian, Barents Sea (Århus, 1991), the upper Albian to lower Cenomanian (as R. natans) from Bathurst Island, Australia by Norvick & Burger (1976) and from the Aptian to Albian as R. natans (jr. syn. of R. paucispina) in Australia (Cookson & Eisenack, 1962b). There is no published record of the species from Canada, but I have recognized the first occurrence of R. paucispina in samples also yielding the first occurrence of C. vestitum and P. expolitum in samples from Axel Heiberg Island, Arctic Canada (kindly provided to me by ISPG, Calgary, Canada).

Oligosphaeridium sp. 1 dominates the dinoflagellate cyst assemblage in the upper part of the subzone. Århus (1991) recorded the same species from the middle Albian at Spitsbergen, Norway. The species *Chichaouadinium* vestitum (see also discussion in the systematic part) has previously been recorded from middle Albian from Spitsbergen by Århus (1991), lower to upper Albian offshore eastern Canada by Williams (1975) and from the middle and upper Albian from Alaska by May & Stein (1979) and Arctic Canada by Doerenkamp *et al.* (1976). Singh (1971) reported the species from the upper part of middle Albian and upper Albian in western Canada.

Only a few specimens of *Apteodinium* cf. *C. grande* were observed in the subzone. Heilmann-Clausen (1987) reported *A. grande* from uppermost middle Albian and upper Albian in north-west Europe.

The subzone has been dated as Albian based on the presence of the species *Litosphaeridium arundum* and *Chichaouadinium vestitum*. The first occurrence of *Pseudoceratium expolitum* indicates that part or perhaps the entire subzone is of middle Albian age.

Comparison with other Albian zones. The L. arundum Subzone may be correlated with part of the Protoellipsodinium spinocristatum Subzone which belongs to the lower half of the world-wide Albian Chichaouadinium cf. C. vestitum Zone (Fig. 9) established by Williams (1977).

IV 2. Chichaouadinium vestitum Subzone

Age. Middle Albian.

Definition. Interval from the acme of *Chichaouadinium vestitum* to immediately below the lowermost occurrence of *Subtilisphaera kalaalliti* sp. nov.

Characteristic species. The two species Odontochitina operculata (70) and Palaeoperidinium cretaceum (71) are common to dominant (Fig. 8, Enclosure 2) while Apteodinium cf. A. grande (121, L), Batioladinium shaftesburiense sp. nov. (113, L), Chichaouadinium vestitum (114, LT), Ellipsoidictyum imperfectum (81, LT), Leptodinium cancellatum (101, LT) Odontochitina singhii (112, L), Protoellipsodinium spinocristatum (125, F, LT), Pseudoceratium eisenackii (92, LT) and Rhombodella paucispina (118) are very rare to frequent in the subzone.

Thickness and distribution. The subzone is only present in section 20 (approximately 170 m thick) and in section 23 where it is less than 100 m thick. The subzone is recorded from Wollaston Forland and Clavering \emptyset (Figs 2, 5, Enclosure 1).

Geological setting. Sediments assigned to the subzone rest upon dark mudstones of the Litosphaeridium arundum Subzone and are overlain by Tertiary basalts.

Lithology. Sandy streaked mudstones with incipient ripples concentrated in bands of 0.2–1.0 m thickness.

Discussion. The C. vestitum Subzone is characterised by the last occurrence of many species, especially at the very top of the exposed part of the subzone. The many last occurrences and the fact that the sediments assigned to the subzone are cut off by basalts indicate a hiatus between the strata dated as middle and late Albian.

Protoellipsodinium spinocristatum is the only species with a first occurrence in the subzone, but it is rare. The species range from the lower Aptian to upper Albian in south-east France (Davey & Verdier, 1971, 1974). Chichaouadinium vestitum has also previously been reported to have its last occurrence in the upper Albian (see discussion of the C. vestitum in the systematic chapter). Leptodinium cancellatum is reported as having its last occurrence in lower Albian in north-west Europe (Heilmann-Clausen, 1987) whereas Costa & Davey (1992) reported it from the base of the upper Aptian to the lower part of the upper Albian in England and in the North Sea. Brideaux & McIntyre (1975) reported the species to range up to the middle Albian in the District of Mackenzie, Canada. They also recorded the last occurrence of Ellipsoidictyum imperfectum in the uppermost middle Albian of the same area whereas Costa & Davey (1992) reported the last occurrence of the species in the upper Albian in England an the North Sea. Ellipsoidictyum imperfectum has not been recorded above the C. vestitum Subzone in East Greenland.

Apteodinium cf. A. grande has not been recorded above the present subzone. The species is very rare in the material studied from East Greenland and no stratigraphic conclusion has been based on this last occurrence.

The last occurrences of *E. imperfectum* and *L. cancellatum* may indicate a middle Albian age for the subzone.

Comparison with other Albian zones. The C. vestitum Subzone might be correlated with the lower part of the uppermost lower Albian to mid upper Albian Ascodinium scabrosum Zone (Fig. 9) erected for north-west Germany by Prössl (1990) based on the extinction of Odontochitina singhii in both zones. The C. vestitum Subzone may be correlated with the world-wide lower to middle Albian Protoellipsedinium spinocristatum Subzone (Williams, 1977) which is defined as the interval from the first appearance of P. spinocristatum to the first appearance of Xenascus ceratioides.

V. Subtilisphaera kalaalliti Zone

Age. Late Albian to ?early Cenomanian.

Definition. The base of the zone is defined on the first occurrence of Subtilisphaera kalaalliti sp. nov. The upper boundary is defined on the last local occurrence of Epelidosphaeridia spinosa. Subdivision. The Subtilisphaera kalaalliti Zone is divided into four subzones; (1) Wigginsiella grandstandica Subzone, (2) Odontochitina ancala Subzone, (3) Ovoidinium? sp. 1 Subzone and (4) Epelidosphaeridia spinosa Subzone (Fig. 7).

Thickness and distribution. The maximum thickness of the zone is 485 m. It is present in 13 sections in the southern part of the area studied on Hold with Hope, Geographical Society \emptyset and Traill \emptyset (Figs 2, 5, Enclosure 1).

V 1. Wigginsiella grandstandica Subzone

Age. Early late Albian.

Definition. Interval from the first occurrence of Subtilisphaera kalaalliti sp. nov. to immediately below the first occurrence of Odontochitina ancala.

Characteristic species. The three stratigraphically important species *Circulodinium* sp. 1 (128, FB), *Rhombodella paucispina* (118), *Subtilisphaera kalaalliti* sp. nov. (132, FB) are common to dominant (Fig. 8, Enclosure 2) while *Dorocysta litotes* (130, FB), *Palaeohystrichophora infusorioides* (131, FB), *Wigginsiella grandstandica* (127, FB) and *Xiphophoridium alatum* (134, FB) are very rare to frequent in the subzone.

Thickness and distribution. The subzone is 65 m thick in section 31 and occurs in one sample in section 29, both from Geographical Society \emptyset (Figs 2, 5, Enclosure 1).

Geological setting. The base of sediments belonging in the subzone has been recorded in section 31 where it rests unconformably upon middle Jurassic sandstones.

Lithology. Dark sandy mudstones with scattered sandstone layers.

Discussion. The coincidence that several species have their last or first occurrences at the base of the present subzone (Fig. 8) may indicate the presence of a hiatus between the strata here dated as middle and late Albian.

Wigginsiella grandstandica, which has its first occurrence at the base of the *W. grandstandica* Subzone, has previously only been reported from Alaska (as Genus A, May & Stein, 1979; May, 1979). Lucas-Clark (1987) refers to oral communications with J. Bennett, H. Haga, F. E. May and V. D. Wiggins (1982–1984), who have used the species as an upper Albian marker in Alaska. The species is also recorded from Axel Heiberg Island, Arctic Canada in samples kindly provided by the ISPG, Calgary, Canada. There W. grandstandica occurs together with Chichaouadinium vestitum, Luxadinium propatalum and Rhombodella paucispina. The first occurrence of the W. grandstandica in Canada occurs immediately above the last occurrence of Odontochitina singhii. The ranges of Leptodinium cancellatum and W. grandstandica overlap in the Canadian material.

Dorocysta litotes was originally described from the Cenomanian of England and France by Davey (1970). Williams & Bujak (1985) assign a lower Cenomanian range to the species whereas Brideaux & Myhr (1976) reported the species from unspecified Albian and Cenomanian in the District of Mackenzie, Canada. Dorocysta litotes is rare but consistent in the W. grandstandica Subzone.

The new species *Subtilisphaera kalaalliti* occurs for the first time in the *W. grandstandica* Subzone.

The species *Circulodinium* sp. 1 is abundant throughout the subzone. *Rhombodella pausispina*, which is rare in the two previous subzones, becomes common in the uppermost part of the *W. grandstandica* Subzone. *Palaeohystrichora infusorioides* and *Xiphophoridium alatum* have their first occurrences in this subzone. These species have not previously been recorded below the upper Albian according to Davey & Verdier (1971; 1973) and Williams & Bujak (1985), indicating a late Albian age for the subzone. Prössl (1990) recorded *X. alatum* from uppermost middle Albian to upper Turonian in north-west Germany.

Comparison with other upper Albian zones. The uppermost part of the Ascodinium scabrosum Zone (uppermost lower Albian to upper Albian; Fig. 9), erected for north-west Germany by Prössl (1990), may be correlated with the present subzone based on the first occurrence of *X. alatum* in both zones. However the *A. scabrosum* Zone differs by the absence of *P. infusorioides* and *D. litotes*. The *W. grandstandica* Subzone may be correlated with the lower part of the world-wide Xenascus ceratioides – Carpodinium obliquicostatum Subzone (Williams, 1977) based on the first occurrence of *P. infusorioides* and *X. alatum* within both subzones.

V 2. Odontochitina ancala Subzone

Age. Mid late Albian.

Definition. Interval from the first occurrence of Odontochitina ancala to immediately below the first occurrence of Ovoidinium? sp. 1. Characteristic species. The three stratigraphically important species Circulodinium sp. 1 (128, L), Rhombodella paucispina (118) and Subtilisphaera kalaalliti sp. nov. (132) are common to dominant (Fig. 8, Enclosure 2) while Cauca parva (107, L), Dorocysta litotes (130), Epelidosphaeridia sp. 1 (138, FB), Litosphaeridium arundum (116, L), Odontochitina ancala (126, FB), Odontochitina costata, Palaeohystrichophora infusorioides (131), Wigginsiella grandstandica (127, L) and Xiphophoridium alatum (134) are very rare to frequent in the subzone.

Thickness and distribution. The subzone is represented by 160 m in section 30 and approximately 220 m in section 37. Part of the subzone is present in sections 28, 35, 36 and 38. The subzone was only observed in the southern part of the area at Hold with Hope, Geographical Society \emptyset and Traill \emptyset (Figs 2, 5, Enclosure 1).

Geological setting. The lower part of the sections of the *O. ancala* Subzone are the basal sediments in these sections.

Lithology. Dark sandy mudstones containing scattered sandstone intervals with small scale ripples and cross bedding. Section 30 seems to represent 2 or 3 upwards-coarsening sequences.

Discussion. Odontochitina ancala has previously been recorded from the middle and upper Albian from Western Interior, USA (Bint, 1986) and from the middle and upper Albian, Alaska where May & Stein (1979) recorded the species as O. cf. O. operculata.

Cauca parva, which has its last occurrence within the *O. ancala* Subzone, last occurs in the middle Albian strata in north-west Europe but specimens, probably reworked, have been observed in the upper Albian and lower Cenomanian (Heilmann-Clausen, 1987). *Cauca parva* ranges world-wide up to the top of the upper Albian according to Williams & Bujak (1985).

The last occurrence of *Litosphaeridium arundum* within the subzone, correlates with the last occurrence of the species in the lower part of upper Albian in the Paris Basin in France (Davey & Verdier, 1971). *Rhombodella paucispina* is very abundant in the subzone. This species has not previously been reported from sediments younger than late Albian in Europe and Canada, whereas the species seems to range into the Cenomanian in Australia (see discussion at the *L. arundum* Subzone). The *O. ancala* Subzone is dominated by *Rhombodella paucispina* and *Subtilisphaera kalaalliti* sp. nov.

The first occurrence of *Odontochitina costata* occurs within the subzone. The species has previously been recorded from the upper Albian in France (Davey & Verdier, 1973) and from the middle and upper Albian of western Canada (Singh, 1971).

The presence of *O. costata, P. infusorioides, R. paucispina, Xiphophoridinium alatum* and the last occurrence of *L. arundum* indicate a mid late Albian age for the subzone.

Comparison with other upper Albian zones. The middle part of the *O. ancala* Subzone may possibly be correlated with the base of the middle part of the upper Albian to lowermost Cenomanian *Litosphaeridium siphoniphorum* Zone (Fig. 9) erected for north-west Germany by Prössl (1990). The correlation is based on the extinction of *Litosphaeridium arundum* and presence of *Xiphophoridium alatum* in both zones. The *O. ancala* Subzone may be correlated with the world-wide *Xenascus ceratioides* – *Carpodinium obliquicostatum* Subzone (Williams, 1977; Fig. 9) based on the presence of *P. infusorioides* and *X. alatum* in both subzones.

V 3. Ovoidinium? sp. 1 Subzone

Age. Mid to late Albian.

Definition. Interval from the lowermost occurrence of *Ovoidinium*? sp. 1 to immediately below the lowermost occurrence of *Epelidosphaeridia spinosa*.

Characteristic species. The three stratigraphically important species Rhombodella paucispina (118), Ovoidinium? sp. 1 (140, FB) and Subtilisphaera kalaalliti sp. nov. (132) are common to dominant (Fig. 8, Enclosure 2) while Dorocysta litotes (130), Epelidosphaeridia sp. 1 (138, L), Fromea aff. F. expolita (143, F, LT), Odontochitina ancala (126, L), Ovoidinium sp. 2 (141, F, LT), Palaeohystrichophora infusorioides (131), Vesperopsis mayi (98, LB), Xenascus ceratioides (144, F) and Xiphophoridium alatum (134) are very rare to frequent in the subzone.

Thickness and distribution. The complete subzone is represented by approximately 255 m of sediments at section 30 whereas only part of the subzone is present in sections 24, 25, 27 and 40. All five sections are situated in the southern part of the area on Hold with Hope, Geographical Society Ø and Traill Ø (Figs 2, 5, Enclosure 1).

Geological setting. Sediments belonging in the lower part of the subzone rest upon dark sandy mudstones of the *Odontochitina ancala* Subzone in sections 30 and 40. The age of the underlying sediments in the remaining sections has not been determinated.

Lithology. Dark sandy mudstones with several lenticular and crossbedded sandstone layers up to 12 m thick. The upper part of section 24 is covered by Tertiary basalts.

Discussion. Ovoidinium? sp. 1 is quite abundant in the lower part of the Ovoidinium? sp. 1 Subzone. The species is, according to L. I. Costa (personal communication, 1989) very abundant in the upper Albian to lowermost Cenomanian in the Troms and Hammerfest basins, offshore north-west Norway.

Fromea aff. *F. expolita* in East Greenland is restricted to the *Ovoidinium*? sp. 1 Subzone. The species has certain similarities to *F. expolita*, which previously has only been described from the Hauterivian and Barremian in the District of Mackenzie, Canada, by Brideaux (1977).

Vesperopsis mayi, which in East Greenland seems to range up into the middle part of the upper Albian, has previously been recorded from the Albian (Bint, 1986). Xenascus ceratioides first occurs in the middle part of the Ovoidinium? sp. 1 Subzone. The species has previously been recorded from the middle and upper Albian in France (Davey & Verdier, 1971). The world-wide range of X. ceratioides is, according to Williams & Bujak (1985), middle Albian to lowermost Maastrichtian.

Few specimens of *Odontochitina ancala* occur in the subzone. The species has not been recorded from post late Albian strata in this study or previously (Bint, 1986).

The abundance of *R. paucispina* indicates a late Albian age for the subzone.

Comparison with other upper Albian zones. The Ovoidinium? sp. 1 Subzone may possibly be correlated with the middle part of the upper Albian to lowermost Cenomanian Litosphaeridium siphoniphorum Zone (Fig. 9) erected for north-west Germany by Prössl (1990). The correlation is based on the first occurrence of Xenascus ceratioides in both zones. The Ovoidinium? sp. 1 Subzone may be correlated with the upper part of the worldwide middle to upper Albian Xenascus ceratioides – Carpodinium obliquicostatum Subzone (Williams, 1977) based on the first occurrence of X. ceratioides in both subzones.

V 4. Epelidosphaeridia spinosa Subzone

Age. Late Albian - middle? Cenomanian.

Definition. The lower boundary of the subzone is defined by the lowermost occurrence of Epelidosphaeridia spinosa. The upper boundary is defined by the local last occurrence of *Epelidosphaeridia spinosa*.

Characteristic species. The two stratigraphical important species *Rhombodella paucispina* (118) and *Subtilisphaera kalaalliti* sp. nov. (132) are common to dominant (Fig. 8, Enclosure 2) while *Batioladinium jaegeri* (67), *Desmocysta plekta* (86), *Dorocysta litotes* (130), *Epelidosphaeridia spinosa* (145, FB), *Palaeohystricophora infusorioides* (131), *Palaeoperidinium cretaceum* (71), *Ovoidinium*? sp. 1 (140), *Xenascus ceratioides* (144) and *Xiphophoridium alatum* (134) are very rare to frequent in the subzone.

Thickness and distribution. The subzone has only been recorded in 5 m of thick dark mudstone at section 39 on Traill \emptyset (Figs 2, 5, Enclosure 1).

Discussion. Epelidosphaeridia spinosa was originally described from the lower Cenomanian in England by Cookson & Hughes (1964). Davey (1969) recorded the species from lower and middle horizons of the Cenomanian in England and France and from one Albian sample (Sas. 1023) from Saskatchewan, Canada. The Albian age of the sample was confirmed by Singh (1983, table 7). Davey & Verdier (1971; 1973) reported the species from the upper Albian in France and Foucher (1979) reported a uppermost Cenomanian extinction of *E. spinona* in France and Europe. *Dorocysta litotes* is, according to Williams & Bujak (1985), a lower Cenomanian species and it has previously only been reported from Albian strata in a well from the District of Mackenzie, Canada (Brideaux & Myhr, 1976).

Batioladinium jaegeri, Palaeoperidinium cretaceum and Rhombodella paucispinosa (as R. natans) all have their last occurrences at the top of the upper Albian (lower Vraconian) Stoliczkaia blancheti ammonite zone in the Vraconian type section in France (Davey & Verdier, 1973). In the same area the first occurrence of Epelidosphaeridia spinosa is reported from the top of the underlying upper Albian, pre-Vraconian, Mortoniceras inflatum ammonite zone (Davey & Verdier, 1973). The fact that the four species also occur together in East Greenland indicates that the Epelidosphaeridia spinosa Subzone may be of late Albian age.

Comparison with other zones. The E. spinosa Subzone possibly correlates with the upper Albian to lowermost Cenomanian Litosphaeridium siphoniphorum Zone (Fig. 9) erected for north-west Germany by Prössl (1990). The correlation is based on the first occurrence of E. spinosa in both zones. The E. spinosa Subzone might correlate with the very top of the world-wide middle to upper Albian Xenascus ceratioides – Carpodinium obliquico-statum Subzone and the world-wide lowermost Kiokan-sium polypes polypes (originally Cleistosphaeridium polypes) Zone established by Williams (1977).

Systematic palynology

The present systematic chapter includes all the dinoflagellate cyst species included in the range-charts (Fig. 8, Enclosure 2; Appendix, Tables 2-41) in alphabetic order according to genus. It should be noted that the age of the range given for each cyst species in East Greenland is tentative (see also the 'Dinoflagellate cyst zonation in East Greenland' chapter). References to species not discussed below and not listed in the 'References' are to be found in Lentin & Williams (1989). Species described after 1989 are discussed in the text. Previous records are mentioned in the same order as in the section 'Dinoflagellate cyst distribution and zonation in the Lower Cretaceous'. References to miospores and other palynomorphs encountered in the study are also included in the present reference list. The tabulation formulae given for dinoflagellate cysts in the systematic section follows Kofoid (1907, 1909).

Division Pyrrhophyta Pascher 1914 Class Dinophyceae Fritsch 1929 Order Peridinales Haeckel 1894

Genus Achomosphaera Evitt, 1963 Achomosphaera? neptuni (Eisenack, 1958) Davey & Williams, 1966a Plate 1, Figs 1–3

Comments. The specimens recorded are similar to Eisenack's (1958) holotype in size and have the same characteristic trifurcate processes although the length of the processes on the specimens from Greenland tend to be slightly longer than on the type material. The fibrous nature of the processes, sometimes radiating from the base, mentioned by Davey & Williams (1966a) has also

been recognised in the present material (Plate 1, Fig. 3). The archaeopyle is precingular (Plate 1, Fig. 1).

Occurrence in East Greenland. Barremian to Aptian. Sections 2, 3, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 21, 32 and 33. Five specimens, probably reworked, were observed in the lower to middle Albian in sections 3 and 32.

Previous occurrences. Davey & Verdier (1974) reported the last occurrence of A.? neptuni from the upper Aptian ammonite dated Aptian type area in south-east France. In north-west Germany Prössl (1990) recorded the range of the species from the lower Hauterivian to the upper Barremian. In north-west Europe and in North Sea wells this species has been reported from the upper Ryazanian to upper Aptian (Heilmann-Clausen, 1987) and from the lower Barremian of the Barents Sea (Århus et al., 1990). Singh (1964) reported A. sp. cf. A. neptuni from the middle Albian, central Alberta, Canada. Brideaux & Myhr (1976) and Brideaux (1977) recorded the species from the Hauterivian to Aptian, District of Mackenzie, Canada. The type material was described as Baltisphaeridium neptuni from the Lower Cretaceous in Germany by Eisenack (1958).

Achomosphaera? neptuni seems to have its last occurrence in the uppermost Aptian in Europe, Greenland and Canada, which agrees with the observation by Davey & Verdier (1974).

Genus Apteodinium Eisenack, 1958; emend. Lucas-Clark, 1987 Apteodinium cf. A. grande Cookson & Hughes, 1964 Plate 1, Figs 4-5

Comments. The very few specimens recorded from East Greenland differ from the type species by being smaller, less circular in outline and occasionally the wall appears to be granular or reticulate (Plate 1, Fig. 5). These differences and the first occurrence in middle Albian may indicate that the specimens from East Greenland belong to another species.

Occurrence in East Greenland. Middle Albian. Sections 2, 5, 20 and 23. The species is very rare.

Previous occurrences. Apteodinium grande was previously recorded from the upper Albian to upper Cenomanian, north-west Germany (Prössl, 1990), from the middle? and upper Albian, north-west Europe and North Sea wells (Heilmann-Clausen, 1987) and from Albian to Cenomanian, offshore eastern Canada (Bujak & Williams, 1978). The type material was described from the upper Albian to the lower Cenomanian in England by Cookson & Hughes (1964).

Apteodinium grande is never recorded in ammonite dated strata older than late Albian (Davey & Verdier, 1971; 1973). According to Davey & Verdier the species is a marker species within the upper Albian.

Apteodinium reticulatum Singh, 1971 Plate 1, Fig. 6

Occurrence in East Greenland. Upper Barremian, middle and upper Albian. Sections 7, 13, 14, 15, 17, 19, 20, 21, 23, 30, 31 and 32.

Previous occurrences. Apteodinium reticulatum was previously recorded from the lower Barremian in a core offshore south Norway (Aarhus *et al.*, 1986). The type material was described from the upper Albian in the Peace River area, Canada, by Singh (1971) and later recorded from the middle Albian, Banks Island, Arctic Canada, by Doerenkamp *et al.*, (1976). No 'accurately' dated ages exist for *A. reticulatum*.

Genus Atopodinium Drugg, 1978 Atopodinium haromense Thomas & Cox, 1988

Plate 12, Figs 6-8

- 1978 Dinoflagellate type 4; Thusu, p. 86, pl. 7, fig. 13.
- 1978 ?Maduradinium sp. A; Davey, p. 894-895, pl. 5, figs 5-6.
- 1982b ?Maduradinium sp. A Davey, 1978; Davey, p. 9, pl. 10, fig. 13.
- 1988 Atopodinium haromense; Thomas & Cox, p. 319–320, fig. 4, pl. I, figs 1–6.
- 1988 Maduradinium? sp. A Davey, 1978; Lister & Batten, p. 46–47, pl. 4, figs 18–19.

Comments. The specimens recorded in the present study have an archeopyle breakage in the apical region and pronounced sutural splitting between the precingular plates as described for *?Maduradinium* sp. A by Davey (1978, p. 894–895). The archeopyle appears to be apical type (tA) as described for *A. haromense* by Thomas & Cox (1988) or a combination apical/precingular type with an adnate apical portion (tA) a + Pa, as proposed for *?Maduradinium* sp. A Davey, 1978 by Lister & Batten (1988, p. 46–47). The specimens are similar to those illustrated by Thusu (1978), Davey (1978, 1982b), Lister & Batten (1988) and Thomas & Cox (1988).

The Jurassic forms of *A. haromense* (Thusu, 1978; Thomas & Cox, 1988) seem to have slightly less pronounced ornamentation on the autophragm than the Cretaceous forms (Davey, 1978, 1982b; Lister & Batten, 1988; the present study).

Prössl (1990, p. 107–108; plate 5, figs 4–5; plate 6, fig. 9) described and illustrated the species *Atopodinium cretaceum* from the lower Hauterivian to lower Barremian in Germany. *Atopodinium cretaceum* differs from *A. haromense* by having an apical archeopyle where plate 1' is lost.

Occurrence in East Greenland. Uppermost Barremian, lowermost Aptian. Sections 14, 15, 17 and 21.

Previous occurrences. Atopodinium haromense was described from the upper Oxfordian to lower Kimmeridgian (Jurassic), England by Thomas & Cox (1988). The species was previously recorded (as ?Maduradinium sp. A) from the lower to upper Aptian, south-east England (Lister & Batten, 1988), upper Ryazanian – lower Valanginian to lower-upper? Hauterivian, onshore Denmark (Davey, 1982b), upper Ryazanian to lower Barremian – Aptian, in North Sea wells (Heilman-Clausen, 1987) and Turonian to lower Maastrichtian, offshore south-western Africa (Davey, 1978). The species is also recorded (as Dinoflagellate type 4) from the Callovian and Oxfordian (Jurassic), Arctic Norway (Thusu, 1978).

Genus Balmula Bint, 1986 Balmula pentaradiata (Singh, 1983) Bint, 1986 Plate 1, Fig. 7

Comments. Only one specimen was recorded from Greenland. It has, as described by Singh, 5 horns of almost equal length with a circlet of spinules at the horn terminations. The species is very thin walled and hyaline and therefore easily overlooked; this could be the reason for only one specimen having been recorded in the present study.

Occurrence in East Greenland. Uppermost middle Albian. Section 20.

Previous occurrence. Balmula pentaradiata was described from the lower Cenomanian, Upper Shaftesbury Formation, Peace River area, Canada, by Singh (1983). Genus Baticasphaera Drugg, 1970b Baticasphaera spumosa (Brideaux, 1977) Below, 1981a Plate 1, Figs 8-9

Comments. The few recorded specimens from Greenland are similar to Brideaux's (1977) holotype in size and shape whereas the fibrous structure on the periphragm is less pronounced than on the type material.

Occurrence in East Greenland. Upper Barremian – lower Aptian. Section 7.

Previous occurrences. The type material was described from the Aptian, District of Mackenzie, Canada, by Brideaux (1977).

Genus *Batioladinium* Brideaux, 1975; emend. Pourtoy, 1988 *Batioladinium? exiguum* (Alberti, 1961) Brideaux, 1975 Plate 2, Figs 1-2

Comments. The specimens from East Greenland included in *B*.? *exiguum* have a psilate to shagreenate surface, rarely with few scattered granulae or echinae. The antapical horns are short, usually unequal and blunt although

- Fig. 1. Achomosphaera? neptuni × 500, section 10; GGU 342093–8; 6.4–144.0 MGUH 21678.
- Fig. 2. Achomosphaera? neptuni × 585, section 17; GGU 342162, MGUH 21679.
- Fig. 3. Achomosphaera? neptuni × 2350, close-up illustrating the fibrous nature of the cyst surface and the basal part of the processes.
- Fig. 4. Apteodinium cf. A. grande × 500, section 20; GGU 342199–5, 6.0–140.1; MGUH 21680.
- Fig. 5. Apteodinium cf. A. grande × 500, section 20; GGU 342194–5, 19.8–148.0; MGUH 21681.
- Fig. 6. Apteodinium reticulatum × 500, section 17; GGU 342161-4, 8.5–150.8; MGUH 21682.
- Fig. 7. Balmula pentaradiata × 500, section 20; GGU 342196-4, 4.3-153.2; MGUH 21683.
- Figs. 8 & 9. Batiacasphaera spumosa × 750, section 7; GGU 342087-4, 6.0-119.0; MGUH 21684.
- Fig. 10. Levisphaera cf. L. crassicingulata × 500, section 29; GGU 342599-4, 11.0-126.0; MGUH 21685.
- Fig. 11. Levisphaera cf. L. crassicingulata × 500, section 18; GGU 342222-4, 3.9-134.1; MGUH 21686.
- Fig. 12. Levisphaera cf. L. crassicingulata × 750, section 17; GGU 342169–4, 5.2–130.2; MGUH 21687.

some are weakly pointed at their free ends. Alberti (1961) did not report granulae or echinae on the wall of the holotype, but otherwise the material from Greenland is very similar to the type specimens. *Batioladinium? exiguum* is distinguished from *B. pomum* Davey, 1982b by its reduced ornamentation and by its shorter apical horn.

Occurrence in East Greenland. Upper Barremian to Aptian. Sections 6, 7, 8, 11, 17, 19 and 21.

Previous occurrences. Batioladinium? exiguum was described as *Broomea exigua* from the lower Hauterivian to the upper Barremian in Germany by Alberti (1961) and from the Hauterivian, offshore eastern Canada (Bujak & Williams, 1978).

Batioladinium jaegeri (Alberti, 1961) Brideaux, 1975 Plate 2, Figs 3-4

Comments. The specimens observed from East Greenland are similar to the specimens illustrated by Alberti (1961). Specimens with short and long apical horns are present.

Occurrence in East Greenland. Lower Barremian to upper Albian. A few specimens are present in almost all samples but the species never dominates the assemblage.

Previous occurrences. Batioladinium jaegeri was previously recorded from the upper Hauterivian, Speeton, England (Duxbury, 1977) to the upper Albian, Switzerland (Davey & Verdier, 1973) and the upper Hauterivian to the upper Albian, north-west Germany (Prössl, 1990). Costa & Davey (1992) recorded the last occurrence of the species in the lower middle Cenomanian in England. The type material was described as *Broomea jaegeri* from the upper Barremian in Germany by Alberti (1961).

Batioladinium longicornutum (Alberti, 1961) Brideaux, 1975 Plate 2, Fig. 6

Occurrence in East Greenland. Barremian. Sections 1, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19 and 21. Rare in the lower Barremian, always present in the upper Barremian.

Previous occurrences. Duxbury (1977) and Davey (1979b) recorded *B. longicornutum* (as *Necorbroomea longicornuta*) at Speeton, England to range from the lower Hauterivian (Speeton Clay litho-unit C11, *Ende-*

moceras ammonite zone) to the top of the 'middle' Barremian (Speeton Clay litho-unit Cement Beds). Harding (1990b) recorded approximately the same range for B. longicornutum in the Speeton section. In contrast, Harding records the range of this species in the Gott section, Germany (table 2, 3, text-fig 2) from the upper Hauterivian (lower part of the Simbirskites (Craspedodiscus) discofalcatus ammonite zone) to the middle part of the uppermost upper Barremian Oxyteuthis depressa belemnite zone, i.e. very close to the top of the Barremian. Batioladinium longicornutum is recorded from the Hauterivian to Barremian, north-west Europe (Heilmann-Clausen, 1987) and the upper Hauterivian to the uppermost Barremian, north-west Germany (Prössl, 1990). Piasecki (1979, fig. 10) illustrated a form, which he referred to B. longicornutum (as Necrobromea longicornuta) from the Hauterivian, Milne Land, East Greenland. This species has relatively short antapical horns and might be a specimen of Batioladinium radiculatum, Davey, 1982b. Batioladinium longicornutum has also been recorded from the lower Barremian, Barents Sea (Århus et al., 1990) and the Hauterivian and Barremian, Arctic Norway (Thusu, 1978). Doerenkamp et al. (1976) il-

Plate 2

- Fig. 1. *Batioladinium? exiguum* × 500, section 7; GGU 342087–4, 12.3–128.5; MGUH 21688.
- Fig. 2. Batioladinium? exiguum × 500, section 17; GGU 342162–6, 7.4–143.4; MGUH 21689.
- Fig. 3. Batioladinium jaegeri Specimen with relatively short apical horn × 500, section 7; GGU 342081–4, 21.2–139.6; MGUH 21690.

Fig. 4. Batioladinium jaegeri Specimen with long apical horn × 500, section 20; GGU 342183-4, 9.6–134.0; MGUH 21691.

- Fig. 5. Batioladinium shaftesburiense sp. nov. holotype. × 500, section 26; GGU 351630, 22.0–143.6; MGUH 21692.
- Fig. 6. Batioladinium longicornutum × 500, section 21; GGU 342239–4, 14.1–141.6; MGUH 21693.
- Fig. 7. Batioladinium micropodum × 750, section 21; GGU 342238–3, 16.4–126.0; MGUH 21694.
- Fig. 8. Batioladinium micropodum × 500, section 17; GGU 324169–4, 6.3–155.0; MGUH 21695.
- Fig. 9. Batioladinium? pelliferum × 750, section 17; GGU 342161-4, 14.2-132.0; MGUH 21696.
- Fig. 10. Batioladinium? pelliferum × 750, section 17; GGU 342162–4, 15.5–147.2; MGUH 21697.

Fig. 11. Batioladinium micropodum/pelliferum transition form × 750, section 7; GGU 342235–4, 22.0–139.0; MGUH 21698.

- Fig. 12. Batioladinium shaftesburiense sp. nov. × 500, section 20; GGU 342200–4, 5.0–126.0; MGUH 21699.
- Fig. 13. *Batioladinium shaftesburiense* sp. nov. × 500, section 20; GGU 342200–4, 14.2–139.8; MGUH 21700.

lustrated a form referred to *B. longicornutum* from the middle Albian, Banks Island, Arctic Canada. The illustrated specimen is considered to be *B. shaftesburiense* sp. nov. (see below). *Batioladinium longicornutum* has not previously been reported from Arctic Canada but examination of the South Sabine section from Melville Island (kindly provided for me by I.S.P.G., Calgary) yielded a few specimens in samples of supposedly late Barremian age. The species has never been reported from strata younger than late Barremian excluding the above mentioned record by Doerenkamp *et al.* (1976). *Batioladinium longicornutum* was described (as *Broomea longicornuta*) from the upper Hauterivian to the upper Barremian in Germany by Alberti (1961).

According to Harding's (1990b) belemnite-controlled Gott section, *B. longicornutum* occurs from the upper Hauterivian to very close to the top of the Barremian.

Batioladinium micropodum (Eisenack & Cookson, 1960) Brideaux, 1975 Plate 2, Figs 7-8

Comments. In the material from East Greenland, the specimens are coarsely and closely granular, as in the type material described by Eisenack & Cookson (1960).

Occurrence in East Greenland. Upper Barremian to lower Aptian and lower middle Albian. Sections 1, 2, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 21, 26, 32 and 33.

Previous occurrences. Batioladinium micropodum was previously recorded from the lower Aptian and lower part of the upper Aptian in the Aptian type area in southern France by Davey & Verdier (1974), the lower Hauterivian in North Sea wells (Heilmann-Clausen, 1987), the lower Barremian, Barents Sea (Århus et al., 1990), the lowermost Barremian, offshore south Norway (Aarhus et al., 1986), the Hauterivian to uppermost Barremian, Arctic Norway (Thusu, 1978), the Hauterivian to uppermost Aptian, Andøya, Norway (Aarhus et al., 1986), the Hauterivian to Aptian, District of Mackenzie, Canada (Brideaux, 1977) and the Barremian to lowermost Albian, Arctic Canada (Pocock, 1976). Eisenack & Cookson (1960) described the type material (as Broomea micropoda) from the Aptian and Albian in Australia. The uppermost occurrence of B. micropodum in the upper Aptian ammonite dated Aptian type section in France (Davey & Verdier, 1974) advocates for an upper Aptian last occurrence. However Costa & Davey (1992) recorded the last occurrence of the species in the lower upper Albian in ammonite-dated sediments in England.

Batioladinium? pelliferum (Alberti, 1961) Brideaux, 1975 Plate 2, Figs 9-10

Discussion. The cyst wall of the specimens recorded from East Greenland is densely covered by $1-2 \mu$ long echinae and resembles Alberti's holotype. The material often differs from the specimen illustrated by Dörhöfer & Davies (1980, figs 33A-D) by having longer and more pronounced echinae.

Batioladinium? pelliferum with an echinate surface is normally easily distinguished from *B. micropodum* with a granulate surface, but transitional forms with both echinae and granulae do occur (Plate 2, Fig. 11). Wiggins (1975) treated *B.? pelliferum* as a jr syn. of *B. micropodum*, without any reason given. The present author proposes that the two species be retained, like Dörhöfer & Davies (1980), with the remark that intermediate forms exist. The two species occur together and have the same stratigraphic distribution in East Greenland.

Occurrence in East Greenland. Upper Barremian to Aptian and middle Albian. Sections 6, 7, 8, 17, 19 and 26.

Previous occurrences. Previously recorded from the uppermost Barremian to lower Aptian, Germany (Alberti, 1961, type material), the Hauterivian, Germany (Dörhöfer & Davies, 1980) and the Hauterivian and the 'middle' Barremian in North Sea wells (Heilmann-Clausen, 1987).

Batioladinium shaftesburiense sp. nov. Plate 2, Figs 5 & 12–13

- 1971 Broomea sp.; Singh, p. 321, plate 49, fig. 5.
- 1976 Broomea longicornuta; Doerenkamp et al., plate 5, fig. 26.
- 1990 Batioladinium shaftesburiensis sensu Nøhr-Hansen; Århus et al. figs 11 G, H.

Origin of name. After Shaftesbury Formation, Peace River area, north-west Alberta, Canada, where Singh (1971) first recorded the species.

Diagnosis. The cysts are proximate, elongate with slightly convex sides, a long (approximately 1/2 the overall length), slender apical horn and two medium-sized (approximately 1/2 the length of the main body), wide-based, gradually tapering antapical horns. The cysts are frequently dorso-ventrally flattened with slightly convex margin. The wall is thin and hyaline with a psilate surface. The archeopyle is apical (type \overline{IA}) with a distinct

ventral sulcal notch. The operculum is simple and usually free.

Description

Cyst type. The cyst is proximate.

Shape. The cyst is elongate with slightly convex sides and one long slender apical horn and two medium-sized antapically horns, of which the right is slightly longer than the left. These horns have wide bases, taper gently and are almost parallel. The cyst is often dorso-ventrally compressed.

Wall relationships. The wall is apparently composed of one layer, the autophragm. The wall is thin, less than 1 μ , and hyaline with a psilate surface.

Paratabulation. This is only indicated by the archeopyle sutures and the presence of a sulcal notch. Two weak sutures are recognised on the holotype below the sulcal notch (Plate 2, Fig. 5) indicating a sulcal plate. The archeopyle suture is located near the apex on the dorsal side.

Archeopyle. The archeopyle is apical (type tA), with a distinct sulcal notch. The operculum is simple and lost on all examined specimens except the holotype.

Holotype. Plate 2, Fig. 5, MGUH 21692 from GGU 351530-4, 22.0-143.6.

Type locality. Section 27, Hold with Hope, East Greenland (Fig. 2).

Dimensions. The total length of the holotype is 247 μ , the maximum width is 39 μ . The length of the apical horn is 119 μ , and the length of the antapical horns are 43 μ and 46 μ .

Size range. Total length of the cyst, 247 μ (1 specimen). Length of the apical horn, 119 μ (1 specimen). Length of cyst, excluding the operculum, 102 (113) 128 μ (5 specimens). Width of cyst, 34 (37) 39 μ (5 specimens). Length of the left antapical horn, 25 (33) 43 μ (7 specimens). Length of the right antapical horn, 29 (39) 47 μ (7 specimens).

Discussion. Species of Batioladinium with a psilate surface like B. jaegeri, B.? longicornutum, B. radiculatum (Davey, 1982b) and Batioladinium? exiguum are distinguished by the length and form of their apical and antapical horns. The same criterion is used in defining the

new species B. shaftesburiense. Batioladinium shaftesburiense is distinguished from B. longicornutum by the antapical horns being only half as long as in B. longicornutum. Additionally the antapical horns of B. longicornutum are slender, seldom parallel to one another and characterized by their perforations. The wall of B. shaftesburiense differs by its thin and hyaline appearance from the often brownish and thicker cyst wall on B. longicornutum. Batioladinium shaftesburiense is distinguished from B. jaegeri by the length of the antapical horns which are approximately twice the length of the horns of B. jaegeri. The antapical horns of B. radiculatum (Davey, 1982b) are approximately of the same length as on B. shaftesburiense but B. radiculatum is distinguished from the new species in having internal vacuoles in the distal part of the cyst and on the antapical horns.

Occurrence in East Greenland. Middle Albian. Sections 20, 23, 29 and 34.

Previous occurrences. Singh (1971) recorded the species as *Broomea* sp from the upper Albian, Shaftesbury Formation, Peace River area, Alberta, Canada, Doerenkamp *et al.* (1976) recorded the species as *Broomea longicornuta* from the lower to middle Albian, Christopher Formation, Banks Island, Arctic Canada and the species was recorded from the lower to middle Albian, Lost Hammer section, Axel Heiberg Island, Arctic Canada (the present author). Århus *et al.* (1990, figs 11G, H) illustrate two specimens of *B. shaftesburiensis* sensu Nøhr-Hansen from lower Barremian cores in the Barents Sea.

Apart from the lower Barremian occurrence in the Barents Sea, the species seems to be restricted to the Albian deposits.

Genus Bourkidinium Morgan, 1975; emend.

Type species. Bourkidinium granulatum Morgan, 1975, p. 160, plate 2, figs 2a-c.

Discussion. Morgan (1975, p. 160) described and compared the genus *Bourkidinium* as follows. "*Description.* Cysts are chorate, clongate ellipsoidal, and bear long, hollow, tubular processes which are restricted to the apex and antapex (probably associated with only the apical and antapical series of reflected plates). The low relief surface ornament shows no evidence of a cingulum or tabulation. The archeopyle is apical, type A".

Comparison. This genus differs from Tanyosphaeridium

Davey & Williams, 1966b by having processes present only at the apex and antapex.

The type species for the genus is *B. granulatum* Morgan, 1975. The only other species so far placed in the genus is *Bourkidinium psilatum* Singh, 1983.

The characteristic feature for the genus is that it has "tubular processes which are restricted to the apex and antapex (probably associated with only the apical and antapical series of reflected plates)" (Morgan, 1975, p. 160). In the description of the type species for the genus *Bourkidinium* Morgan (1975) mentioned that one or two processes may not belong to the apical group. Morgan's (1975) observation together with the precingular processes reported in the present study requires an emendation of the genus *Bourkidinium*.

The following emendation is proposed. "Chorate cysts with an elongate, ellipsoidal main body that bears long, hollow, tubular processes which are restricted to the apex (reflecting apical, or apical and precingular plate-series) and antapex (reflecting antapical, or maybe antapical, postcingular and sulcal plate-series). The equatorial zone is wide and devoid of processes. The low relief surface ornament shows no evidence of a cingulum or tabulation. The archeopyle is apical (type tA)".

Bourkidinium granulatum Morgan, 1975; emend. Plate 3, Figs 1–9

- 1 fate 5, 1 lgs 1-9
- 1975 Bourkidinium granulatum; Morgan, p. 160, plate 2, figs 2a-c.
- 1980 Bourkidinium granulatum; Morgan, plate 2, figs 15-16.
- 1983 Bourkidinium granulatum (Morgan, 1975); Singh, p. 124, plate 42, figs 6 & 7.
- 1987 aff. *Bourkidinium granulatum* (Morgan, 1975); Heilmann-Clausen, p. 47, plate 13, figs 22–24.
- 1988 Tanyosphaeridium boletum; Backhouse, Plate 41, Fig. 15, only Plate 3, Figs 1–9.

Discussion. The holotype of *B. granulatum* illustrates (Morgan, 1975, figs 2a-c) that all the apical processes are connected to the free operculum whereas Morgan (1975, p. 161) under the description of the type species (*B. granulatum*) mentioned that: "all, or all but one or two of the apical group of processes are on the free operculum". From the original description it can be concluded that a certain number of processes belonging to the precingular plate series is acceptable for the species and additionally for the genus *Bourkidinium*. The illustration of the holotype of the other *Bourkidinium* species, *B. psilatum* Singh, 1983 (p. 125, plate 42, fig. 8) indicates that most,

if not all, of the apex processes are of a precingular nature.

Twelve specimens of *B. granulatum* have been recorded in the material from East Greenland. Three of these are without precingular processes (Plate 3, Figs 7–9) and nine with 1–6 precingular processes (Plate 3, Figs 1–6). Six to fifteen processes occur at the antapex but is has not been possible to distinguish the plate series. The processes are 23–30 μ long, 1.0–2.5 μ in diameter. The body is about 45 μ long and 25 μ in diameter.

This discussion advocates an extension of Morgan's (1975, p. 161) description and the following emendation is proposed for *B. granulatum*: "Chorate cysts with elongate ellipsoidal main body that bears long, hollow, distally flared processes arranged in two groups, one in the apical region and the other in the antapical region. The number of processes is variable but there are always more at the antapex than at the apex. The group at the antapex consist of 6–15 processes which, apart from the antapical processes, may include the postcingular and sulcal processes. The group at the apical, or the apical and precingular processes. The processes are cylindrical or slightly tapering

- Fig. 1. Bourkidinium granulatum × 500, section 29; GGU 324599–4, 2.8–120.7; MGUH 21701.
- Fig. 2. Bourkidinium granulatum × 750, section 25; GGU 346442–3, 5.5–123.0; MGUH 21702.
- Fig. 3. Bourkidinium granulatum × 750, section 20; GGU 342199–4, 8.7–118.8; MGUH 21703.
- Fig. 4. *Bourkidinium granulatum* × 750, section 20; GGU 342194-4, 10.6–126.0; MGUH 21704.
- Fig. 5. Bourkidinium granulatum × 750, section 30; GGU 324617–8, 15.5–144.4; MGUH 21705.
- Fig. 6. *Bourkidinium granulatum* × 750, section 28; GGU 351636-4, 22.3–120.0; MGUH 21706.
- Fig. 7. *Bourkidinium granulatum* × 750, section 28; GGU 351638-4, 10.7–131.0; MGUH 21707.
- Fig. 8. Bourkidinium granulatum × 750, section 20; GGU 342179–4, 8.2–149.1; MGUH 21708.
- Fig. 9. Bourkidinium granulatum × 750, section 36; GGU 324090–7, 5.9–131.6; MGUH 21709.
- Fig. 10. *Bourkidinium* sp. 1 × 750, section 20; GGU 342199–4, 6.3–139.0; MGUH 21710.
- Fig. 11. Bourkidinium? sp. 2 × 500, section 10; GGU 342092–4, 18.3–137.1; MGUH 21711.
- Fig. 12. *Bourkidinium*? sp. 2 × 500, section 10; GGU 342092–4, 16.4–124.1; MGUH 21712.
- Fig. 13. Callaiosphaeridium asymmetricum × 500, section 23; GGU 351676, 17.6–123.5; MGUH 21713.
- Fig. 14. Callaiosphaeridium asymmetricum × 500, specimen with vacuolar parasutural ridges. Section 31; GGU 324623–8, 17.4–131.6; MGUH 21714.

towards the distal end which is strongly flared and slightly recurved with serrate margins. The body is densely granulate and lacks indications of a cingulum or tabulation. The archeopyle is apical (type tA). The processes at apex are generally concentrated on the free, composite operculum but up to 6 processes may occur on the uppermost part of the precingular plate series leaving a wide equatorial zone devoided of processes".

Occurrence in East Greenland. Upper Barremian, section 1 and middle to upper Albian, sections 20, 23, 24, 25, 28, 29, 30 and 36.

Previous occurrences. Bourkidinium granulatum was previously recorded from the lower Hauterivian, northwest Germany (Prössl, 1990), the Valanginian to the upper Hauterivian as aff. B. granulatum in North Sea wells (Heilmann-Clausen, 1987), the upper Aptian to the lower Cenomanian, Peace River area, Canada (Singh, 1983) and the upper Aptian and Albian, Australia (Morgan, 1975, 1980).

Bourkidinium sp. 1 Plate 3, Fig. 10

Description. Elongate to ellipsoidal chorate cyst with approximately 30 long $(14-17 \mu)$, slender $(1-1.5 \mu)$, distally recurved, serrate processes concentrated in the antapical region. The cingular area is devoid of processes. Processes have not been observed on the apical region of the single specimen observed due to damage. The body is 49μ long and 31μ wide and densely covered by granulae. The species differs from the previously described *B. granulatum* and *B. psilatum* by having more antapical processes and by its surface ornamentation.

Occurrence in East Greenland. Only one specimen has been recorded from the middle Albian, section 20.

Bourkidinium? sp. 2 Plate 3, Figs 11–12

Discussion. The specimens questionably assigned to the genus *Bourkidinium* have more than 15 apical/precingular and more than 20 'antapical' processes, a broad cingular area almost devoid of processes, except for 1 to 6 cingular widely spaced, processes. All processes are long, slender, distally trumpet-shaped with a serrate margin.

Occurrence in East Greenland. Lower Barremian, section 10, from where only few specimens have been recorded. Genus Callaiosphaeridium Davey & Williams, 1966b; emend. Below, 1981a Callaiosphaeridium asymmetricum (Deflandre & Courteville, 1939) Davey & Williams, 1966b Plate 3, Figs 13-14

Comments. The species occasionally has vacuolar sutural crests as illustrated by Duxbury (1980, plate 8, fig. 11). *Callaiosphaeridium asymmetricum* is always rare in the studied material.

Occurrence in East Greenland. Upper Barremian to upper Albian. Sections 6, 7, 8, 14, 15, 19, 20, 21, 23 and 31.

Previous occurrences. Callaiosphaeridium asymmetricum was previously recorded from Cenomanian to Santonian, southern England (Clarke & Verdier, 1967), lower Hauterivian to lower Campanian, England and the North Sea (Costa & Davey, 1992), Cenomanian to Campanian, France (Foucher, 1979), lower Hauterivian to upper Turonian, north-west Germany (Prössl, 1990), Barremian to Aptian - lower Albian in North Sea wells (Heilmann-Clausen, 1987), Aptian Andøya, Norway (Aarhus et al., 1986), middle to upper Albian, Alaska (May & Stein, 1979), upper Albian, central Alberta, Canada (Brideaux, 1971), Barremian, District of Mackenzie, Canada (Brideaux, 1977) and Hauterivian to Cenomanian, offshore eastern Canada (Williams, 1975; Bujak & Williams, 1978). The type material was recorded as Hystrichosphaeridium asymmetricum from the Senonian in France by Deflandre & Courteville (1939).

Genus Canningia Cookson & Eisenack, 1960b; emend. Helby, 1987 Canningia palliata Brideaux, 1977 Plate 4, Figs 1-2

Comments. The few specimens observed in this study are similar to Brideaux's (1977, plate 3, figs 1–8) type material in size and shape. No tabulation is observed. The consideration of Helby (1987) that *C. palliata* should be a junior synonym of *C. reticulata* is questioned by the present author. Cookson & Eisenack (1960b, plate 38, fig. 1) clearly show the presence of a cingulum on the holotype of *C. reticulata* whereas a cingulum was not observed on the holotype of *C. palliata* (Brideaux, 1977, plate 3, figs 1–4).

Occurrence in East Greenland. Lower Aptian. Section 7.

Previous occurrence. Canningia palliata was previously

recorded from Barremian, District of Mackenzie, Canada (Brideaux, 1977).

Canningia reticulata Cookson & Eisenack, 1960b; emend. Helby, 1987 Plate 4, Figs 3-6

Comments. The specimens recorded from East Greenland are very similar to the forms of the species described and illustrated from Morocco by Below (1981) but are slightly larger (up to $100 \ \mu$ wide) in contrast to the width measured by Below (69 μ (73 μ) 84 μ).

Occurrence in East Greenland. In a narrow interval in uppermost lower Aptian, sections 12 and 13, where it is abundant.

Previous occurrences. Canningia reticulata was previously recorded from Barremian to Albian, Morocco, where it is abundant in the uppermost Barremian, middle Aptian and lowermost Albian (Below, 1981; abb. 89), Tithonian, Upper Jurassic, Australia (Cookson & Eisenack, 1960b, type material), Berriasian to Hauterivian, Australia (Helby *et al.*, 1987) and upper Valanginian to 'middle' Barremian, Papua New Guinca (Davey, 1988).

Genus Canninginopsis Cookson & Eisenack, 1962b Canninginopsis cf. C. colliveri (Cookson & Eisenack, 1960b) Backhouse, 1988 Plate 4, Fig. 11

Discussion. Cookson & Eisenack (1960b) described the wall of the species as thin, granular or closely to sparsely spinulate. Very few specimens with granulae have been observed in the present study. Most specimens from East Greenland with the same size and shape have $2-7 \mu$ long spines and have been assigned to Circulodinium brevispinosum (Pocock, 1962) Jansonius, 1986.

Occurrence in East Greenland. Lower-upper Aptian, section 13.

Previous occurrences. Canninginopsis colliveri was previously recorded from upper Hauterivian to upper Aptian, Andøya (Aarhus *et al.*, 1986), lower middle Albian, central Alberta, Canada (Singh, 1964), middle to upper Albian, Peace River, Canada (Singh, 1971), Hauterivian to lower Albian, District of Mackenzie, Canada (Brideaux, 1977), upper Barremian to upper Albian, Arctic Canada (Pocook, 1976), middle to upper Albian, Alaska (May & Stein, 1979), Hauterivian to Aptian, offshore eastern Canada (Williams, 1975), Hauterivian to Cenomanian, Grand Banks (Bujak & Williams, 1978), uppermost Neocomian to lower Cenomanian, Australia (Morgan, 1980) and uppermost Neocomian to lower Albian in Australia (as *Circulodinium colliveri*) (Helby *et al.*, 1987). The type material was described from the Aptian in Australia by Cookson & Eisenack (1960b).

Genus Carpodinium Cookson & Eisenack, 1962b; emend. Leffingwell & Morgan, 1977 Carpodinium granulatum Cookson & Eisenack, 1962b; emend. Leffingwell & Morgan 1977

Plate 4, Fig. 12

Occurrence in East Greenland. Upper part of lower Aptian or lower part of upper Aptian, section 13 and lower part of middle Albian, sections 20 and 21. Only few specimens were recorded.

Previous occurrences. Carpodinium granulatum was previously recorded from the upper Barremian and upper Aptian to upper Albian, north-west Europe and in North Sea wells (Heilmann-Clausen, 1987), upper Aptian to lower part of the upper Albian, north-west Germany (Prössl, 1990), Cenomanian, Peace River area, Canada (Singh, 1983), middle to upper Albian, Alaska (May & Stein, 1979) and upper Aptian, Papua New Guinea (Davey, 1988). The type material was described from the Aptian to Albian in Australia by Cookson & Eisenack (1962a).

Genus Cassiculosphaeridia Davey, 1969a Cassiculosphaeridia magna Davey, 1974 Plate 4, Fig. 13

Occurrence in East Greenland. Upper Barremian. Sections 8 and 18. Only a few specimens have been observed during this study.

Previous occurrences. The type material was recorded from the lower to upper Barremian at Speeton, England by Davey (1974). *Cassiculosphaeridia magna* is also recorded from Ryazanian to Barremian in North Sea wells and Hauterivian to Barremian, north-west Europe (Heilmann-Clausen, 1987) where the species is often a dominant feature of the dinoflagellate cyst assemblages (Davey, 1979b), lower Hauterivian to 'middle' Barremian, north-west Germany (Prössl, 1990). The species was not recorded above the lower Barremian in Germany and England by Harding (1990b). *Cassiculosphaeridia magna* was also recorded from the lower Barremian, Barents Sea (Århus *et al.*, 1990) and the upper Hauterivian to Aptian, Andøya, Norway (Aarhus *et al.*, 1986). Based on 'accurately' dated material from Speeton, *C. magna* has its last occurrence in the upper Barremian (Davey, 1974).

Cassiculosphaeridia reticulata Davey, 1969a Plate 4, Fig. 14

Occurrence in East Greenland. Upper Barremian, middle Albian? Sections 1, 11, 15, 16, 17, 18 and 21. The species is rare in the studied material.

Previous occurrences. The type material was recorded from the lower to upper Cenomanian in south-east England and north-west France by Davey (1969). Cassiculosphaeridia reticulata was also recorded from the Cenomanian to Santonian, France (Foucher, 1979), lower Cretaceous to upper Santonian, England and the North Sea (Costa & Davey, 1992), lower Hauterivian to middle Albian, north-west Germany (Prössl, 1990), Ryazanian to Late Cretaceous in North Sea wells by Heilmann-Clausen (1987) who mentioned that his ranges might be unreliable due to difficulties in distinguishing between C. reticulata and Ellipsoidictyum imperfectum. From Norway C. reticulata was recorded from the lower Barremian, Barents Sea (Århus et al., 1990), uppermost Hauterivian to Aptian, Andøya (Aarhus et al., 1986) and upper Hauterivian to lower Barremian, south-west offshore Norway (Aarhus et al., 1986).

Genus Catastomocystis Singh, 1983 Catastomocystis microreticulata Singh, 1983 Plate 5, Fig. 1

Occurrence in East Greenland. Only three specimens were recorded, one specimen from the lower part of the middle Albian and two specimens from the uppermost Albian – lower Cenomanian?. Sections 26 and 39.

Previous occurrence. The type material was recorded from lower Cenomanian, Peace River area, Canada (Singh, 1983).

Genus *Cauca* Davey and Verdier, 1971 *Cauca parva* (Alberti, 1961) Davey & Verdier, 1971 Plate 5, Fig. 2

Occurrence in East Greenland. Upper Aptian to upper Albian. Only two specimens were observed from the uppermost Albian. Sections 12, 13, 20, 21, 22, 23, 26, 27, 30, 31, 33 and 37. Where present, the species always occurs in low numbers.

Previous occurrences. Cauca parva was previously recorded from the 'middle' to upper Barremian from Speeton, England (Duxbury, 1980), upper part of the upper Aptian to upper part of the middle Albian in the Aptian and Albian type sections in south-east France (Davey & Verdier, 1971, 1974), lower Aptian to lower Albian, south England (Duxbury, 1983), the lower Barremian to upper Cenomanian, north-west Germany (Prössl, 1990) upper Barremian to lower Cenomanian, north-west Europe and North Sea wells, being rare in the upper Albian and lower Cenomanian (Heilmann-Clausen, 1987). Doerenkamp *et al.* (1976) recorded the species from middle Albian to upper Albian and from Santonian?, Banks Island, Arctic Canada. The type material was described

- Figs. 1 & 2. Canningia palliata × 750, section 7; GGU 342087-4, 7.3-125.1; MGUH 21715.
- Fig. 3. Canningia reticulata × 500, section 37; GGU 351592-4, 20.3-126.5; MGUH 21716.
- Fig. 4. Canningia reticulata × 500, section 37; GGU 351592–4, 8.5–128.2; MGUH 21717.
- Fig. 5. Canningia reticulata × 490, section 37; GGU 351592; MGUH 21718.
- Fig. 6. Canningia reticulata × 1000, same specimen as above close-up of hypocyst.
- Fig. 7. Circulodinium? sp. 2 × 500, section 10; GGU 342094-4, 11.1–124.9; MGUH 21719.
- Fig. 8. Circulodinium? sp. 3 × 500, section 9; GGU 342070-4, 15.4–120.0; MGUH 21720.
- Fig. 9. Circulodinium? sp. 4 × 500, section 7; GGU 342079-4, 19.2-132.3; MGUH 21721.
- Fig. 10. Circulodinium? sp. 4 × 500, section 7; GGU 342079–3, 16.4–127.1; MGUH 21722 .
- Fig. 11. Canninginopsis cf. C. colliveri × 500, section 13; GGU 351579–4, 19.0–132.0; MGUH 21723.
- Fig. 12. Carpodinium granulatum × 750, section 20; GGU 342179-4, 6.4-127.6; MGUH 21724.
- Fig. 13. Cassiculosphaeridia magna × 500, section 18; GGU 342221-4, 9.0-126.0; MGUH 21725.
- Fig. 14. Cassiculosphaeridia reticulata 500x section 17; GGU 342166-4, 7.5-135.1; MGUH 21726.

from the lower Aptian to lower Albian in Germany by Alberti (1961). *Cauca parva* has never been reported 'accurately' below the 'middle' Barremian.

Genus Chichaouadinium Below, 1981a Chichaouadinium vestitum (Brideaux, 1971) Bujak & Davies, 1983 Plate 5, Figs 3-5

Discussion. The specimens recorded from East Greenland are similar to Brideaux's (1971) type material in size and shape. The archeopyle is intercalary often with a free plate 2a. Accessory breaks between the plates 2", 3" and 4" are often observed.

A weakly recognisable, spherical, hyaline inner body is often present. The inner body was not mentioned by Brideaux but the central shadows on the illustrations of Brideaux (1971, plate 29, figs 99–103) may indicate such a body. The species '*Deflandrea*' *limpida* Singh, 1971 which according to Lentin & Williams (1973) is a jr syn. of *C. vestitum*, also has a smooth hyaline, spherical inner body (Singh, 1971, p. 359, plate 61, figs 1–12).

Isabelidinium gallium (Davey & Verdier, 1973) Stover & Evitt, 1978 is very similar to C. vestitum but differs according to Davey & Verdier (1973, p. 197), by being smaller and less spinous, has an inner body but (as mentioned) an inner body may also occur in C. vestitum.

Accepting an inner body for *C. vestitum* reduces the differences between *C. vestitum* and *I. gallium*. The archeopyle on *I. gallium* was described as intercalary type (2a) (Davey & Verdier, 1973, p. 197) but further details have been difficult to see on their illustrations of the species (plate 3, figs 1–4).

The two species C. vestitum and I. gallium have been maintained as separate species but further investigation of the archeopyle of I. gallium may justify including I. gallium as a jr syn. of C. vestitum.

Occurrence in East Greenland. Chichaouadinium vestitum occurs in a few horizons from the lower part of the middle Albian; it is nearly always frequent (up to 7%) in the upper part of the middle Albian. Only one questionable specimen has been observed from the upper Albian. Sections 20, 22, 23, 26 and 36.

Previous occurrences. Chichaouadinium vestitum was previously recorded from middle Albian, Spitsbergen (Århus, 1991), upper Albian, central Alberta, Canada (Brideaux, 1971), upper middle Albian and upper Albian, Peace River area, Canada (Singh, 1971), Aptian, Edmonton Embayment, Canada (Banerjce & Davies, 1988), middle and upper Albian, Banks Island, Arctic Canada (Doerenkamp *et al.*, 1976), lower Aptian to upper Albian, Arctic Canada (Pocock, 1976), upper Albian, Utah, USA (Nichols & Jacobsen, 1982), middle and upper Albian, Alaska (May & Stein, 1979), middle Albian, Alaska (May, 1979) and Albian, offshore eastern Canada (Williams, 1975; Bujak & Williams, 1978).

The species has not, to the author's knowledge, been reported from north-west Europe except for one specimen, described as *Spinidinium* cf. *S. echinoideum* (Cookson & Eisenack, 1960a) Lentin & Williams, 1976, by Davey, 1970. Brideaux (1971, p. 101) mentioned that Davey's *S.* cf. *S. echinoideum* is similar to *C. vestitum*. Brideaux additionally noted that Davey's species is from Cenomanian of Saskatchewan. Davey & Verdier (1973, p. 197) corrected Brideaux's statement mentioning that *S.* cf. *S. echinoideum* (*sensu* Davey, 1970) has been recorded from the Upper Greensand (Albian), Fetcham Mill Borehole, England.

- Fig. 1. Catastomocystis microreticulata × 500, section 26; GGU 351630–4, 3.0–134.2; MGUH 21727.
- Fig. 2. Cauca parva × 500, section 30; GGU 342620–7, 6.6– 121.0; MGUH 21728.
- Fig. 3. Chichaouadinium vestitum × 750, section 20; GGU 342202-4, 7.2-123.9; MGUH 21729.
- Fig. 4. Chichaouadinium vestitum × 500, section 20; GGU 342194–4, 6.0–125.0; MGUH 21730.
- Fig. 5. Chichaouadinium vestitum × 750, section 20; GGU 342183-4, 17.7–131.2; MGUH 21731.
- Fig. 6. Lagenadinium? membranoidium × 750, with a very pronounced antapical corona, section 7; GGU 342085–4, 10.1–129.0; MGUH 21732.
- Fig. 7. Chlamydophorella nyei × 750, section 30; GGU 342620–7, 1.8–131.0; MGUH 21733.
- Fig. 8. Chlamydophorella trabeculosa × 500, specimen with a relatively short apical horn, section 21; GGU 342320–7, 3.0– 121.8; MGUH 21734.
- Fig. 9. Chlamydophorella trabeculosa × 750, specimen with a relatively short apical horn, section 16; GGU 351512-4, 15.2–148.3; MGUH 21735.
- Fig. 10. Chlamydophorella trabeculosa × 530, specimen with a relatively short apical horn, section 16; GGU 351512; MGUH 21736.
- Fig. 11. Chlamydophorella trabeculosa × 750, section 31; GGU 351574-4, 8.3–146.2; MGUH 21737.
- Fig. 12. Circulodinium aff. C. attadalicum × 500, section 17; GGU 342161–4, 6.3–149.8; MGUH 21738.
- Fig. 13. Circulodinium aff. C. attadalicum × 500, section 17; GGU 342169-4, 8.2-144.2; MGUH 21739.
- Fig. 14. Circulodinium brevispinosum × 500, section 13; GGU 351587-4, 13.3–153.8; MGUH 21740.
- Fig. 15. Circulodinium brevispinosum × 500, section 34; GGU 324556–4, 20.9–144.7; MGUH 21741.
- Fig. 16. Circulodinium brevispinosum × 500, section 17; GGU 342174–7, 2.7–141.7; MGUH 21742.

56

Remarks. Chichaouadinium vestitum seems to be a good marker species for the upper part of the middle Albian in East Greenland, whereas it has been recorded from both Aptian and Albian deposits in North America.

The morphologically very similar species *I. gallium* is, according to Heilmann-Clausen (1987), a good marker species in north-west Europe for the uppermost Albian.

Genus *Chlamydophorella* Cookson & Eisenack, 1958; emend. Duxbury, 1983 *Chlamydophorella nyei* Cookson & Eisenack, 1958 Plate 5, Fig. 7

Comments. The specimens referred to *C. nyei* in this study are very similar to Cookson & Eisenack's holotype with a short apical projection. The short slender processes which support the outer membrane are also present on the short apical horn.

Occurrence in East Greenland. Lower Barremian to upper Albian. Only a few specimens were recorded from the Aptian, lower and middle Albian. Sections 6, 8, 9, 11, 17, 18, 20, 21, 24, 26, 30, 37 and 38.

Previous occurrences. Chlamydophorella nyei was previously recorded from the upper Aptian in north-west Europe whereas it ranges up to upper Albian in North Sea wells (Heilmann-Clausen, 1987), lower Hauterivian to upper Turonian, north-west Germany (Prössl, 1990), lower Barremian, Barents Sea (Århus et al., 1990), upper Albian, central Alberta, Canada (Brideaux, 1971), middle and upper Albian, Peace River area, Canada (Singh, 1971), upper Albian to Cenomanian, Saskatchewan, Canada (Davey, 1969), lower Aptian to middle Albian, District of Mackenzie, Canada (Brideaux & McIntyre, 1975), lower Hauterivian to upper Albian, District of Mackenzie, Canada (Brideaux, 1977), lower Aptian to lower Cenomanian, District of Mackenzie, Canada (Brideaux & Myhr, 1976), lower Albian to Cenomanian, Arctic Canada (Doerenkamp et al., 1976) and middle to upper Albian, Alaska (May & Stein, 1979). The type material was described from the Aptian to Turonian in Australia by Cookson & Eisenack (1958).

Chlamydophorella trabeculosa (Gocht, 1959) Davey, 1978 Plate 5, Figs 8-11

Remarks. Davey (1978) has been followed concerning the systematic position of the species.

The specimens observed in the present study all have a pronounced apical horn. The length of the horn is twice (or more) the thickness of the membrane that covers the rest of the cyst. The horn is open-ended with an abrupt angular termination. The contrast to *C. nyei*, no processes are present on the distal part of the horn.

Occurrence in East Greenland. Lower Barremian to upper Albian. The species occurs in 34 sections and is common (more than 10%) in the Aptian.

Previous occurrences. Chlamydophorella trabeculosa was previously recorded from lower Valanginian? - Hauterivian to upper Aptian, north-west Europe (Heilmann-Clausen, 1987), lower-upper? Hauterivian, Denmark (Davey, 1982b), lower Hauterivian to the lower part of the upper Aptian, north-west Germany (Prössl, 1990), Valanginian to upper Aptian, Arctic Norway (Thusu, 1978), lower Barremian, Barents Sea (Århus et al., 1990), Hauterivian to upper Aptian, Andøya, Norway (Aarhus et al., 1986), lower Barremian, offshore south Norway (Ofstad, 1983), upper Hauterivian to lower Albian, Arctic Canada (Pocock, 1976), lower Hauterivian to middle Albian, District of Mackenzie, Canada (Brideaux, 1977), lower Aptian to middle Albian, District of Mackenzic, Canada (Brideaux & McIntyre, 1975), lower Hauterivian to upper Aptian, District of Mackenzie, Canada (Brideaux & Myhr, 1976), middle and upper Albian, Peace River area, Canada (Singh, 1971), lower Aptian to middle Albian, Arctic Canada (Doerenkamp et al., 1976), Cenomanian, Alaska (May, 1979) and lower Hauterivian to upper Aptian, offshore eastern Canada (Williams, 1975; Bujak & Williams, 1978). The type material was described from upper Hauterivian in Germany by Gocht (1959).

Summarizing the observations, the species occurs from Valanginian?-Hauterivian to upper Albian – Cenomanian. The presence of the species throughout the Barremian to Albian in the present study thus seems to be of little stratigraphic importance.

Genus Circulodinium Alberti, 1961 Circulodinium aff. C. attadalicum (Cookson & Eisenack, 1962b) Helby, 1987 Plate 5, Figs 12-13

Discussion. The outline of C. aff. C. attadalicum is polygonal, with two antapical projections of unequal size, as in C. attadalicum. The width of the present specimens ranges from 65–82 μ . Circulodinium attadalicum has a width ranging from 72–82 μ .

The midventral and middorsal areas are relatively free

from appendages and the girdle-like equatorial zone, described by (Cookson & Eisenack, 1962b) has also been recognised in the present material.

Circulodinium aff. C. attadalicum seems to be quite similar to C. attadalicum except from its slightly smaller spines $(1-4 \ \mu)$ compared to the spines on the holotype $(2-6 \ \mu)$. The grouped intervals of spines around the cyst, especially in the antapical region on the holotype of C. attadalicum is not observed on C. aff. C. attadalicum.

Circulodinium aff. C. attadalicum differs mainly from C. brevispinosum by its ornamentation and smaller size. The similar shape and relatively small size difference between C. attadalicum and C. brevispinosum seems to have caused problems in the identification of both species. The surface of C. brevispinosum, however, is covered by rather densely, somewhat irregularly distributed verucae $(1-2 \mu)$ that near the periphery grade into spines or even short muri or membranes up to 5 μ high (Jansonius, 1986, p. 204). Circulodinium attadalicum has a width ranging from 72–82 μ (Cookson & Eisenack, 1962b) whereas the width of C. brevispinosum ranges from 69 to 110 μ (Pocock, 1962) and from 77–115 μ (Brideaux, 1977).

In the present study, specimens with a width less than 82 μ , a polygonal outline and covered by short spines (1-4 μ), except for the equatorial region, are assigned to *C*. aff. *C. attadalicum*, whereas specimens with a width over 82 μ , a polygonal outline and short spines (2-6 μ), irregularly distributed, are assigned to *C. brevispinosum*.

Occurrence in East Greenland. Barremian to lower Aptian. Sections 1, 3, 6, 7, 9, 11, 14, 15, 16, 17, 18, 19, 21, 32 and 33. The species is very abundant in the upper part of its range.

Previous occurrences. Circulodinium attadalicum was previously recorded from the Aptian stratotype in France (Williams, 1977), the Hauterivian to lower Aptian, offshore castern Canada, where the species also is very abundant in the lower Aptian (Williams, 1975), Aptian– Albian?, Australia (Cookson & Eisenack, 1962b, type material) and Valanginian and upper Aptian, Papua New Guinea (Davey, 1988).

Circulodinium brevispinosum (Pocock, 1962) Jansonius, 1986 Plate 5, Figs 14-16

Comments. The specimens recorded in the present study are more than 100 μ wide and have the characteristic shape illustrated on the holotype. The length of the spines

is variable $(2-7 \mu)$ as described by Pocock. The species has been distinguished from *C*. aff. *C. attadalicum* by its regular ornamentation and by being larger. *Canninginopsis colliveri* (Cookson & Eisenack, 1960b) Backhouse, 1988, differs from *C. brevispinosum* by having granulae or smaller spines.

Occurrence in East Greenland. Lower to upper Aptian – lower? Albian. Sections 2, 4, 12, 13, 17, 26 and 34. The species, which becomes more abundant in its upper range, has not been observed together with *C*. aff. *C. attadalicum*.

Previous occurrences. Circulodinium brevispinosum was previously recorded from lower? Albian, Peary Land, North Greenland and upper Aptian to middle Albian Barents Sea as the Circulodinium colliveri - brevispinosum group (Århus, 1991), Aptian, Arctic Norway (Thusu, 1978), upper Barremian and Aptian, Canada (Pocock, 1962, holotype). Brideaux (1977, p. 15) discussed the range given by Pocock and suggested a lower and middle Albian, possibly Aptian range, as most likely in the western Canadian plains. Brideaux (1977) reported the species from the Aptian and lower Albian, District of Mackenzie, Canada, Brideaux & McIntyre (1975) gave an Aptian to middle Albian age for the species (as Tenua sp. A) in the same area. Brideaux & Myhr (1976) reported the species from the Hauterivian to upper Aptian also from the District of Mackenzie, Canada. Circulodinium brevispinosum has also been reported from the upper Aptian and lower Albian, Edmonton Embayment, Canada (Banerice & Davies, 1988).

The species has only been reported from the pre-Aptian by Brideaux & Myhr (1976) and an Aptian first appearance seems to fit with most of the previous observations. The reported last occurrence for the species seems to range from the upper Aptian to middle Albian.

Circulodinium distinctum (Deflandre & Cookson, 1955) Jansonius, 1986 Plate 6, Fig. 1

Occurrence in East Greenland. Lower Barremian to upper Albian. The species occurs in 34 sequences and is often common (more than 10%).

Previous occurrences. The type material was described from the Senonian in Australia by Deflandre & Cookson (1955). According to Williams & Bujak (1985) *C. distinctum* range from Kimmeridgian (Jurassic) to post Maastrichtian (uppermost Cretaceous). *Circulodinium* sp. 1 Plate 6, Figs 2–4

Description. Proximate to proximochorate asymmetric cyst with a short blunt apical horn and two antapical lobes, one of which may be reduced. Cyst dorso-ventrally compressed. Surface of cyst covered by spines which become short or are absent on the central part of the dorsal and ventral sides.

Dimensions. Length with operculum 70-80 μ , width 60-70 μ , length of spines 5-8 μ .

Discussion. Circulodinium aff. C. attadalicum differs from Circulodinium sp. 1 by its ornamentation of shorter spines and by its more pronounced antapical lobes. Circulodinium sp. 1 differs from C. distinctum by having an apical horn and two antapical lobes.

Occurrence in East Greenland. Lower part of the upper Albian. Sections 29, 30 and 31.

Circulodinium? sp. 2 Plate 4, Fig. 7

Description. Small cysts (40–45 μ in diameter), spherical to subspherical cyst occasionally with antapical lobes. Archeopyle apical, operculum free. Surface densely reticulate to granulate. Granulae less than 1 μ .

Discussion. Circulodinium? sp. 2 differs from previous described *Circulodinium* species by its smaller size and by its low spines. The species are almost identical to *Canningia? turrita* Brideaux, 1977 in size, shape and ornamentation, but differs by having an apical archeopyle in contrast to the apical/intercalary combination archeopyle described by Brideaux (1977, p. 13).

Occurrence in East Greenland. Barremian and Aptian. Sections 5, 9, 10, 13, 15, 17 and 33.

Circulodinium? sp. 3 Plate 4, Fig. 8

Description. Spherical to subspherical cysts (55–65 μ in diameter) often with antapical lobes. Archeopyle apical, operculum free. Surface ornamentation consists of scattered 1–2.5 μ granulae to short spines.

Discussion. Circulodinium? sp. 3 differs from Circulodinium? sp. 2 by being larger and by its fewer but longer granulae/spines. Circulodinium? sp. 3 differs from previous described *Circulodinium* species by its smaller size and smaller granulae/spines. *Circulodinium*? sp. 3 has some similarity to *Canningia torulosa* Davey & Verdier, 1973, although the, cingulum on *C. torulosa* is usually devoid of ornamentation.

Occurrence in East Greenland. Barremian and lower Aptian. Sections 9, 13, 15 and 18.

Circulodinium? sp. 4 Plate 4, Figs 9-10

Description. Relatively large (90–115 μ in diameter) subspherical to angular cyst with two antapical lobes. Archeopyle apical, operculum free. Scattered spines (4–5 μ long) with expanded to bifurcate distal termination.

Discussion. Circulodinium? sp. 4 differs from Circulodinium? sp. 2 and 3 by its larger size. The two antapical lobes on Circulodinium? sp. 4 are less pronounced than the blunt antapical lobes or horns of Circulodinium brevispinosum and of C. attadalicum. Circulodinium? sp. 4 differs from Canningia reticulata by having less pronounced antapical lobes and by its ornamentation.

Occurrence in East Greenland. Upper Barremian. Sections 1, 7 and 14.

- Fig. 1. Circulodinium distinctum × 500, section 18; GGU 342220-4, 9.6-155.0; MGUH 21743.
- Fig. 2. Circulodinium sp. 1 × 500, section 30; GGU 324619–3, 18.3–153.0; MGUH 21744.
- Fig. 3. Circulodinium sp. 1 × 500, section 29; GGU 324599-4, 11.0-126.0; MGUH 21745.
- Fig. 4. Circulodinium sp. 1 × 500, section 29; GGU 324599–4, 2.3–122.0; MGUH 21746.
- Fig. 5. Cleistosphaeridium? aciculare × 500, section 10; GGU 342092-7, 13.1-129.0; MGUH 21747.
- Fig. 6. Cleistosphaeridium? aciculare × 500, section 17; GGU 342161-4, 7.1-151.4; MGUH 21748.
- Fig. 7. Cleistosphaeridium huguoniotii × 500, section 30; GGU 324617–8, 6.5–126.0; MGUH 21749.
- Fig. 8. Coronifera oceanica × 500, section 5; GGU 351565-4, 6.4-129.3; MGUH 21750.
- Figs 9 & 10. Cribroperidinium? aff. C. cornutum × 500, section 15; GGU 351512–5, 7.8–127.6; MGUH 21751.
- Fig. 11. Cribroperidinium? aff. C. cornutum × 500, section 11; GGU 342103-4, 12.3-141.0; MGUH 21752.
- Figs 12 & 13. Cribroperidinium edwardsii × 500, section 8; GGU 342078–9, 13.2–151.4; MGUH 21753.
- Fig. 14. Cribroperidinium edwardsii × 500, section 30; GGU 324617–8, 14.0–150.5; MGUH 21754.

Genus Cleistosphaeridium Davey et al., 1966

Cleistosphaeridium? aciculare Davey, 1969a / Cleistosphaeridium? multispinosum (Singh, 1964) Brideaux, 1971 complex Plate 6, Figs 5-6

Comments. The specimens included in this complex have numerous short or long slender processes or numerous short or long broader processes. The processes occasionally bifurcate distally. Brideaux (1971) included the C.? *aciculare* figured specimen of Davey (1969, plate 6, fig. 11) as a partial synonym of C.? *multispinosum*. The processes of C.? *multispinosum* are slightly shorter (10–15 μ) than on Davey's specimen (up to 21 μ), but apart from the length of the processes the two species are very similar. The holotype of C.? *aciculare*, which has broad acuminate processes, was not included in C.? *multispinosum* by Brideaux. In the present study both forms have been included in the C.? *aciculare* – C.? *multispinosum* complex.

Occurrence in East Greenland. Lower Barremian to upper Albian; it is present in 35 of the examined sections. The complex has been named *Cleistosphaeridia? aciculare* in the range charts (Tables 1–40 and Scheme 2).

Previous occurrences. Previously recorded as C. aciculare, upper Hauterivian to upper Cenomanian and as C. multispinosum, lower Albian to lowermost Cenomanian, north-west Germany (Prössl, 1990), middle to upper Albian, central Alberta, Canada (Singh, 1964), upper Albian to lower Cenomanian, Saskatchewan, Canada, Davey (1969), lower Barremian to upper Aptian, District of Mackenzie, Canada (Brideaux, 1977), lower Aptian to middle Albian, District of Mackenzie, Canada (Brideaux & McIntyre, 1975), lower Hauterivian to lower Cenomanian, District of Mackenzie, Canada (Brideaux & Myhr, 1976) and middle to lower Cenomanian, Alaska (May, 1979; May & Stein, 1979).

Cleistosphaeridium huguoniotii (Valensi, 1955a) Davey, 1969a Plate 6, Fig. 7

Occurrence in East Greenland. Lower Barremian to upper Albian. The species occurs in 27 sections and constitutes often more than 5% of the Barremian dinoflagellate cyst assemblage; however it occurs more sporadically in the Aptian and Albian material.

Previous occurrences. Cleistosphaeridium huguoniottii

was previously recorded from the lower Cretaceous to upper Cenomanian, England and the North Sea (Costa & Davey, 1992), the lower Hauterivian, Andøya (Aarhus *et al.*, 1986), Hauterivian, offshore south Norway (Aarhus *et al.*, 1986), middle and upper Albian, Alaska (May & Stein, 1979) and Albian and Cenomanian, offshore castern Canada (Bujak & Williams, 1978). The type material was described from the Upper Cretaceous by Valensi (1955).

Genus *Coronifera* Cookson & Eisenack, 1958; emend. Mao Shaozhi & Norris, 1988 *Coronifera oceanica* Cookson & Eisenack, 1958; emend. May, 1980 Plate 6, Fig. 8

Occurrence in East Greenland. Barremian to middle Albian. Sections 1, 5, 7, 8, 11, 12, 15, 17, 18, 19, 20, 21 and 23, where it only occurs sporadically and in low numbers.

Previous occurrences. Coronifera oceanica was previously recorded from the upper Hauterivian to the upper Turonian, north-west Germany (Prössl, 1990), Hauterivian to Barremian in North Sea wells (Heilmann-Clausen, 1987), lower Albian, Saskatchewan, Canada (Davey,

- Fig. 1. Cribroperidinium exilicristatum × 500, section 21; GGU 342232-4, 17.7-125.3; MGUH 21755.
- Fig. 2. Cribroperidinium exilicristatum × 500, section 21; GGU 342232–4, 10.3–126.0; MGUH 21756.
- Fig. 3. Cribroperidinium intricatum × 500, section 24; GGU 346458–4, 17.5–136.0; MGUH 21757.
- Fig. 4. Cribroperidinium intricatum × 500, section 24; GGU 346458–4, 9.8–139.7; MGUH 21758.
- Fig. 5. Cribroperidinium muderongense × 500, section 19; GGU 342215–3, 13.7–140.3; MGUH 21759.
- Fig. 6. Cribroperidinium muderongense × 500, section 19; GGU 342215–3, 4.1–138.2; MGUH 21760.
- Fig. 7. Cribroperidinium tensiftense × 500, section 30; GGU 342610-3, 12.3-137.2; MGUH 21761.
- Fig. 8. Ctenidodinium elegantulum × 500, section 18; GGU 342222–7, 12.7–127.8; MGUH 21762.
- Fig. 9. Desmocysta plekta × 500, specimen with precingular archeopyle, section 1; GGU 360380–4, 14.1–136.4; MGUH 21763.
- Fig. 10. Desmocysta plekta × 500, specimen with precingular archeopyle, section 21; GGU 342240–4, 18.9–122.2; MGUH 21764.
- Fig. 11. Desmocysta plekta × 525, specimen with apical archeopyle, section 31; GGU 324623–4, 10.9–140.0; MGUH 21765.
- Fig. 12. Desmocysta plekta × 750, specimen with apical archeopyle, section 31; GGU 324623–4, 1.7–128.9; MGUH 21766.

1969), lower to upper Albian, Arctic Canada (Pocock, 1976), middle Albian, Arctic Canada (Doerenkamp *et al.*, 1976), lower Hauterivian to upper Barremian, District of Mackenzie, Canada (Brideaux & Myhr, 1976), lower Cenomanian, Peace River Area, Canada (Singh, 1983) and lower Hauterivian to lower Cenomanian, offshore eastern Canada (Williams, 1975; Bujak & Williams, 1978). The type material was described from the Albian of Australia by Cookson & Eisenack (1958).

Genus Cribroperidinium Neale & Sarjeant, 1962; emend. Helenes, 1984 Cribroperidinium? aff. cornutum Davey, 1974 Plate 6, Figs 9-11

Comments. The cingular and antapical extensions of the pericoels are not as pronounced as on the holotype (Davey, 1974; Plate 2, Figs 2, 3).

Occurrence in East Greenland. Upper part of lower Barremian and upper Barremian. Sections 8, 11, 15, 16 and 19?. The species is rare in the present material.

Previous occurrences. Cribroperidinium? cornutum was previously recorded from the 'middle' and upper Barremian, Speeton, England (Davey, 1974, type material; Duxbury, 1980), upper Barremian, Speeton, England, and Gott, Germany (Harding, 1990b), Santonian, north-west Germany (Yun, 1981) and Barremian in North Sea wells (Heilmann-Clausen, 1987).

Cribroperidinium edwardsii (Cookson & Eisenack, 1958) Davey, 1969a Plate 6, Figs 12-14

Comments. The cysts from East Greenland assigned to *Cribroperidinium edwardsii* are thick walled with scattered coarse spines on the plates. Tabular ridges with few broad based spines have been observed.

Occurrence in East Greenland lower Barremian to upper Albian. Sections 2, 5, 7, 8, 9, 11, 15, 16, 17, 18, 19, 21, 23, 26, 29, 30, 32 and 33.

Previous occurrences. Cribroperidinium edwardsii was previously recorded from the lower Hauterivian to upper Cenomanian, north-west Germany (Prössl, 1990) and Berriasian to Maastrichtian, world-wide (Helenes, 1984). The type material was described from the Albian to lower Turonian in Australia by Cookson & Eisenack (1958). Cribroperidinium exilicristatum (Davey, 1969a) Stover & Evitt, 1978 Plate 7, Figs 1-2

Comments. The cysts from East Greenland included in *Cribroperidinium exilicristatum* are similar in size and shape and have the same poorly defined sutural crests as described by Davey (1969).

Dimensions. Length (77–80 μ), width (60–80 μ), 4 specimens.

Occurrence in East Greenland. Only recorded from the lower Barremian, section 21, where it is common in a restricted interval.

Plate 8

- Fig. 1. Diconodinium articum × 750, section 22; GGU 346584–4, 18.9–153.3; MGUH 21767.
- Fig. 2. Dingodinium? albertii × 500, section 17; GGU 342169-4, 15.1-121.5; MGUH 21768.
- Fig. 3. Dingodinium? albertii × 580, section 17; GGU 342162; MGUH 21769.
- Fig. 4. Dingodinium? albertii × 2300, same specimen as above close-up of sulcal region, section 17; GGU 342162.
- Fig. 5. Discorsia nanna × 500, section 17; GGU 342161-4, 6.1–126.2; MGUH 21770.
- Fig. 6. Dorocysta litotes × 500, section 30; GGU 324613–8, 12.3–136.0; MGUH 21771.
- Fig. 7. Ellipsoidictyum imperfectum × 500, section 21; GGU 342240-4, 5.0-120.8; MGUH 21772.
- Fig. 8. Endoscrinium campanula × 500, section 22; 346584–4, 12.1–144.0; MGUH 21773.
- Fig. 9. Endoscrinium cf. E. rostratum × 500, section 32; 303122–5–4, 6.7–127.0; MGUH 21774.
- Fig. 10. Epelidosphaeridia spinosa × 500, section 39; 355321-4, 2.5-135.0; MGUH 21775.
- Fig. 11. *Epelidosphaeridia* sp. 1 × 500, section 37; 324648–4, 20.5–132.0; MGUH 21776.
- Fig. 12. *Epelidosphaeridia* sp. 1 × 500, section 37; 324650–4, 8.5–121.0; MGUH 21777.
- Fig. 13. *Exiguisphaera plectilis* × 500, section 7; 342081–4, 3.1–139.6; MGUH 21778.
- Fig. 14. Exiguisphaera plectilis × 800, section 17; 342166; MGUH 21779.
- Figs 15 & 16. Exiguisphaera plectilis × 1000, same specimen as above, close-up of ornamentation.
- Fig. 17. *Exochosphaeridium phragmites* × 500, section 19; GGU 342215–3, 21.9–126.0; MGUH 21780.
- Fig. 18. Florentinia mantellii cooksoniae complex × 500, section 21; GGU 342237-4, 8.9-138.0; MGUH 21781.
- Fig. 19. Fromea amphora × 500, section 17; GGU 342167-4, 8.6-141.0; MGUH 21782.
- Fig. 20. Fromea fragilis × 500, section 17; GGU 342161-4, 11.9-150.0; MGUH 21783.

62

Previous occurrences. Cribroperidinium exilicristatum was previously recorded from the lower Cenomanian, north-west Germany (Prössl, 1990), lower to upper Albian, France (Davey & Verdier, 1973) Cenomanian, England and upper Albian, Saskachewan, Canada (Davey, 1969, type material), Albian to lower Santonian, Peace River area (Singh, 1983) and upper Albian to lower Cenomanian, Libya (Uwins & Batten, 1988). The lower Barremian specimens recorded from East Greenland seem to be the oldest record of the species, which has never previously been reported from stages older than Albian.

Cribroperidinium intricatum Davey, 1969a Plate 7, Figs 3-4

Comments. The sutural crests, intratabular ornamentation and shape of the material from East Greenland is very similar to Davey's (1969) description, whereas the overall length (83–94 μ), overall width (68–83 μ) and length of the horn (11–14 μ) on three measured specimens are slightly smaller than Davey's (1969) type material.

Occurrence in East Greenland. Only recorded from the upper Albian. Sections 24 and 31.

Previous occurrence. The type material was recorded from Albian and Cenomanian, England and upper Albian Saskatchewan by Davey (1969).

Cribroperidinium muderongense (Cookson & Eisenack, 1958) Davey, 1969a Plate 7, Figs 5-6

Comments. The specimens from East Greenland assigned to *Cribroperidinium muderongense* have a rather long, slender apical horn (up to 50 μ). The sutural ridges are spiny. Spines also occur on the intratabular areas as single spines or as spiny ridges.

Occurrence in East Greenland. Upper Barremian. Sections 1, 8 and 19. The species is abundant in a restricted interval in section 19.

Previous occurrences. Cribroperidinium muderongense was previously recorded from the lower Hauterivian to upper Aptian, north-west Germany (Prössl, 1990) and Barremian to Santonian world-wide (Helenes, 1984). The type material was described from the Aptian in Australia by Cookson & Eisenack (1958).

Cribroperidinium tensiftense Below, 1981a Plate 7, Fig. 7

Occurrence in East Greenland. Middle upper Albian. Section 30.

Previous occurrences. Cribroperidinium tensiftense was previously recorded from the lower and upper Barremian England and Germany (Harding, 1990b), lower Barremian to upper Aptian, north-west Germany (Prössl, 1990) and Hauterivian to Albian, Morocco (Below, 1981, type material).

Genus *Ctenidodinium* Deflandre, 1938b, emend. Benson, 1985 *Ctenidodinium elegantulum* Millioud, 1969; emend. Below, 1981a Plate 7, Fig. 8

Occurrence in East Greenland. A few specimens were recorded from the lower and upper Barremian. Sections 9, 11, 14, 15, 16 and 18.

Previous occurrences. Ctenidodinium elegantulum was previously recorded from ammonite dated lower Aptain strata, south England (Duxbury, 1983; Lister & Batten, 1988), the lower Hauterivian to upper Barremian, northwest Germany (Prössl, 1990), the lower Valanginian to lower Aptian, north-west Europe (Heilmann-Clausen, 1987), lower Barremian, offshore south Norway (Aarhus *et al.*, 1986), late Hauterivian to lower Barremian offshore south Norway (Costa, 1981; Ofstad, 1983) and Hauterivian, offshore eastern Canada (Williams, 1975; Bujak & Williams, 1978). The type material was described from the upper Hauterivian to Barremian in France by Millioud (1969).

Genus Desmocysta Duxbury, 1983 Desmocysta plekta Duxbury, 1983 Plate 7, Figs 9–12

Discussion. Out of 94 specimens examined from East Greenland, 73 specimens display the same characteristic features including a two-plate, precingular archeopyle, as Duxbury (1983) described for the holotype. In additional 9 damaged specimens were observed, on which it was impossible to recognise the two-plate precingular archeopyle. The species occurs in 23 sections of late early Barremian to late Albian age. Whereas 12 specimens of another form, very similar in size and appearance to *D. plekta*, have been recognised in the upper Albian section

64

31. The species differs from *D. plekta* by having an apical archeopyle. In the present study they are included in *D. plekta* but the different archeopyle may advocate the erection of a new species and maybe also a new genus.

Previous occurrence. The type material was recorded from the Aptian in England by Duxbury (1983).

Genus Diconodinium Eisenack & Cookson, 1960; emend. Morgan, 1977 Diconodinium arcticum Manum & Cookson, 1964 Plate 8, Fig. 1

Comments. Only two specimens have been recorded. They occur in the middle Albian sections 22 and 23. The specimens are approximately 75 μ long and 49 μ wide. The cyst is smooth to weakly granulate and fusiform in shape.

Previous occurrences. Diconodinium arcticum was previously recorded from the Upper Cretaceous, Canada (Manum & Cookson, 1964, type material; McIntyre, 1974) and Aptian in Senegal (Jain & Millepied, 1973). The present record seems to be the first specimens observed from Albian sediments.

Genus Dingodinium Cookson & Eisenack, 1958; emend. Mehrotra & Sarjeant, 1984b Dingodinium? albertii Sarjeant 1966c Plate 8, Figs 2-4

Comments. The size of the recorded specimens falls within the size range of the type material (overall lengths 50–66 μ , overall widths 37.5–52 μ) described by Sarjeant (1966b).

Occurrence in East Greenland. Lower Barremian to lower Aptian. The species is nearly always present in the lower Barremian, upper Barremian and lower Aptian. Sections 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 32 and 33.

Previous occurrences. Dingodinium? albertii was previously recorded from the lower Barremian in Speeton, England (Sarjeant, 1966b, type material), Berriasian to Barremian, Speeton, England (Duxbury, 1977), upper Jurassic to lower Albian, England and the North Sea (Costa & Davey, 1992), upper Hauterivian to upper Barremian, Speeton, England and Gott, Germany (Harding, 1990b), lower Aptian to lowermost Albian, south England (Duxbury, 1983), Aptian, south England (Lister & Batten, 1988), Aptian, south-east France (Davey & Verdier, 1974) and upper Aptian to lower Albian, Germany (Davey, 1982a). The last occurrence of the species tends to be a good marker for the uppermost Aptian – lowermost Albian.

Remarks. Davey (1978) mentioned that the Europeans have tended to use *D*.? *albertii* (overall size 50–66 μ) for their specimens and the Australians and Canadians use *D*. *cerviculum* (overall size 81–109 μ). The difference between the two species is one of size rather than morphology.

Genus Discorsia Duxbury, 1977; emend. Khowaja-Ateequzzaman et al., 1985 Discorsia nanna (Davey, 1974) Duxbury, 1977; emend. Khowaja-Ateequzzaman et al., 1985 Plate 8, Fig. 5

Occurrence in East Greenland. Upper Barremian to lower part of the upper Albian. Sections 1, 2, 6, 7, 8, 9, 14, 17, 18, 19, 20, 21, 22, 23, 26, 31, 33 and 37.

Previous occurrences. Discorsia nanna was previously recorded from the lower Barremian at Speeton, England (Davey, 1974, type material), upper Aptian, south-east France (Davey & Verdier, 1974), lower Valanginian to lower Albian, England and the North Sea (Costa & Davey, 1992), upper Aptian to lower Albian, Germany (Davey, 1982a), the lower Hauterivian to lower part of the upper Aptian, north-west Germany (Prössl, 1990), upper Valanginian to lower Albian, north-west Europe (Heilmann-Clausen, 1987) lower Barremian, Barents Sea (Århus *et al.*, 1990), lower and upper Barremian, District of Mackenzie, Canada (Brideaux, 1977), lower and upper Barremian, District of Mackenzie, Canada (Brideaux & Myhr, 1976) and lower Cenomanian, Peace River area, Canada (Singh, 1983).

Genus Dorocysta Davey, 1970 Dorocysta litotes Davey, 1970 Plate 8, Fig. 6

Occurrence in East Greenland. Upper Albian. Sections 24, 25, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39 and 40.

Previous occurrences. Dorocysta litotes was previously recorded from top middle to lowermost upper Cenomanian, north-west Germany (Prössl, 1990), Cenomanian, England and France (Davey, 1970, type material), and Albian to lower Cenomanian, District of Mackenzie, Canada (Brideaux & Myhr, 1976).

Ellipsoidictyum Klement, 1960 Ellipsoidictyum imperfectum (Brideaux & McIntyre, 1975) Lentin & Williams, 1977b Plate 8, Fig. 7

Occurrence in East Greenland. From upper Barremian to middle Albian. The species is present but never abundant in 18 sections.

Previous occurrences. Ellipsoidictyum imperfectum was previously recorded from the upper part of upper Aptian to the lower-uppermost? part of the upper Albian, England and the North Sea (Costa & Davey, 1992), upper Hauterivian to middle Barremian, Andøya, Norway (Aarhus et al., 1986), lower Aptian to middle Albian, District of Mackenzie, Canada (Brideaux & McIntyre, 1975, type material), lower to upper Albian, Arctic Canada (Doerenkamp et al., 1976), lower Hauterivian to middle Albian, District of Mackenzie, Canada (Brideaux, 1977) and lower Aptian to middle Albian, District of Mackenzie, Canada (Brideaux & Myhr, 1976).

Genus Endoscrinium (Klement, 1960) Vozzhennikova, 1967 Endoscrinium campanula (Gocht, 1959) Vozzhennikova, 1967 Plate 8, Fig. 8

Occurrence in East Greenland. From lower Barremian to upper Albian, the species is seldom represented by more than two specimens in each sample. Sections 1, 7, 8, 9, 10, 11, 15, 16, 17, 19, 20, 21, 22, 23, 30, 32, 33 and 39.

Previous occurrences. Endoscrinium campanula was previously recorded from the lower Hauterivian, northwest Germany (Gocht, 1959, type material), the lower Hauterivian to upper Turonian, north-west Germany (Prössl, 1990), Ryazanian to Aptian – lower Albian in North Sea wells (Heilmann-Clausen, 1987), upper Hauterivian to middle Barremian, offshore south Norway (Ofstad, 1983), lower Barremian to middle Albian, District of Mackenzie, Canada (Brideaux & McIntyre, 1975), middle to upper Albian Peace River area, Canada (Singh, 1971), middle Albian to Cenomanian, Arctic Canada (Doerenkamp et al., 1976), lower Aptian to upper Albian, Arctic Canada (Pocock, 1976), middle Albian, Alaska (May, 1979) and lower Hauterivian to Cenomanian, offshore eastern Canada (Bujak & Williams, 1978).

Endoscrinium cf. *E. rostratum* (Brideaux & McIntyre, 1975) Below, 1981a Plate 8, Fig. 9

Comments. The few specimens observed in the present study are poorly preserved but in general similar to the holotype in size and shape with the characteristic beak-like apical prominence.

Occurrence in East Greenland. Lower Aptian, section 32.

Previous occurrences. Endoscrinium rostratum was previously recorded from the uppermost Aptian to the upper part of the lower Albian, north-west Germany (Prössl, 1990), middle Albian, District of Mackenzie, Canada (Brideaux & McIntyre, 1975, type material) and Albian, Morocco (Below, 1981).

Genus Epelidosphaeridia Davey, 1969a Epelidosphaeridia spinosa (Cookson & Hughes, 1964) Davey, 1969a Plate 8, Fig. 10

Occurrence in East Greenland. Only in a few samples of uppermost Albian age. Section 39.

Previous occurrences. Epelidosphaeridia spinosa was previously recorded from the lower Cenomanian, England (Cookson & Hughes, 1964, type material), the uppermost Albian to lower upper Cenomanian, north-west Germany (Prössl, 1990), the upper part of the middle Albian to upper part of the middle Cenomanian, France and Europe (Foucher, 1981), Albian, Saskatchewan, Canada (Davey, 1969), lower Aptian to upper Albian, Arctic Canada (Pocock, 1976) and lower Albian to Cenomanian, offshore eastern Canada (Williams, 1975; Bujak & Williams, 1978).

Epelidosphaeridia sp. 1 Plate 8, Figs 11–12

Comments. Epelidosphaeridia sp. 1 closely resembles *Epelidosphaeridia spinosa* in size and shape, but differs from it by only having developed a weak cingular girdle and by its slightly shorter spines.

Occurrence in East Greenland. The middle part of the upper Albian, below the first occurrence of *E. spinosa*. Sections 24, 25, 27, 28, 35, 36, 37, 38 and 40.

Genus *Exiguisphaera* Duxbury, 1979a; emend. Jan du Chêne *et al.*, 1986b *Exiguisphaera plectilis* Duxbury, 1980; emend. Jan du Chêne *et al.*, 1986b Plate 8, Figs 13-16

Comments. Although an archeopyle (type 2P) has only been recognised on a few specimens, the species is easily recognised by its characteristic sutural crests.

Occurrence in East Greenland. Primarily upper Barremian but one specimen was recorded from the uppermost part of the lower Barremian and another specimen, from the lowermost Aptian. Sections 1, 7, 14, 15, 17, 18, 19 and 21.

Previous occurrences. Exiguisphaera plectilis was previously recorded from 'middle' Barremian, Speeton, England (Duxbury, 1980, type material, lower and 'middle' Barremian, north-west Germany (Prössl, 1990). Harding (1990b) recorded the first occurrence of the species at the base of the upper Barremian at Speeton, England and at Gott, Germany. Heilmann-Clausen (1987) reported the species from the upper Barremian and lower Aptian in north-west Europe and Aarhus *et al.* (1986) reported the species from the Aptian at Andøya, Norway.

Genus Exochosphaeridium Davey et al., 1966 Exochosphaeridium phragmites Davey et

al., 1966 Plate 8, Fig. 17

Occurrence in East Greenland. Lower Barremian to upper Albian. The species has been recorded in 35 of the 40 sections.

Previous occurrences. Selected records for *E. phragmites*, upper Hauterivian to lower Aptian, England and Germany (Harding, 1990b), lower Hauterivian to upper Turonian, north-west Germany (Prössl, 1990), Cenomanian, England (Davey *et al.*, 1966, type material), lower to upper Albian, France (Davey & Verdier, 1971), Albian to Santonian, France (Foucher, 1979) and upper Barremian to upper Aptian, south-east England (Lister & Batten, 1988). Genus Florentinia Davey & Verdier, 1973; emend. Duxbury, 1980 Florentinia cooksoniae (Singh, 1971) Duxbury, 1980 / Florentinia mantellii (Davey & Williams, 1966b) Davey & Verdier, 1973 Plate 8, Fig. 18

Comments. The presence of secondary tubules towards, but not at, the distal process margins described for *F. cooksoniae* by Duxbury (1980, p. 120) seems to be the most pronounced difference between *F. cooksoniae* and *F. mantellii.* As the presence of those tubules is often difficult to recognise, these two species have been treated together as a complex in the present study.

Occurrence in East Greenland. Upper part of lower Barremian to upper Albian. The complex has been recorded from 29 sections.

Previous occurrences. Florentinia cooksoniae was previously recorded from the upper Albian, Peace River area, Alberta, Canada (Singh, 1971, type material), the upper Hauterivian to upper Albian, north-west Germany (Prössl, 1990) and from lower Albian to upper Cenomanian, world-wide (Williams & Bujak, 1985). Florentinia mantellii was previously recorded from the lower Cenomanian, England (Davey & Williams, 1966b, type material), the upper Aptian to the lower part of the upper Turonian, north-west Germany (Prössl, 1990) and from lower Aptian to lower Cenomanian, world-wide (Williams & Bujak, 1985). Both species are recorded from the Turonian in France by Foucher (1982).

Genus Fromea Cookson & Eisenack, 1958; emend. Yun, 1981 Fromea amphora Cookson & Eisenack, 1958 Plate 8, Fig. 19

Occurrence in East Greenland. Lower Barremian to upper Albian. The species has been recorded from 20 sections.

Previous occurrences. Fromea amphora was previously recorded from the Barremian and Aptian, England (Duxbury, 1980, 1983), Ryazanian to Aptian? in North Sea wells (Heilmann-Clausen, 1987) and Albian and Cenomanian, Australia (Cookson & Eisenack, 1958, type material). According to Costa & Davey (1992) the species has a last occurrence at the top of the Cenomanian in England and the North Sea. Fromea aff. F. expolita (Brideaux, 1977) Lentin & Williams, 1981 Plate 9, Figs 1-4

Comments. The specimens recorded in the present study resemble *Fromea expolita* (Brideaux, 1977) Lentin & Williams, 1981 in their pear-shaped to triangular outline and in their smooth to scabrate surface, but differ by a smaller length $(50-60 \ \mu)$ and width $(50-60 \ \mu)$ compared to the length $(65-100 \ \mu)$ and width $(70-86 \ \mu)$ for the type material.

Occurrence in East Greenland. Restricted to the uppermost Albian. Sections 24, 25, 30 and 37.

Previous occurrence. Fromea expolita was previously only recorded from the Hauterivian and Barremian in the District of Mackenzie, Canada (Brideaux, 1977).

Fromea fragilis (Cookson & Eisenack, 1962b) Stover & Evitt, 1978 Plate 8, Fig. 20

Occurrence in East Greenland. Barremian to Albian. The species has been recorded in 22 of the 40 examined sections.

Previous occurrence. Fromea fragilis was previously recorded from the Aptian to Cenomanian, Australia (Cookson & Eisenack, 1962b, type material), middle and upper Albian, central Alberta, Canada (Brideaux, 1971; Singh, 1971) and Aptian and middle Albian in the District of Mackenzie, Canada (Brideaux & McIntyre, 1975).

Fromea cf. *F. glabella* (Singh, 1971) Lentin & Williams, 1981 Plate 9, Fig. 5

Comments. Only one specimen was recorded in the present study and differs from *F. glabella* by a slightly larger antapical width.

Occurrence in East Greenland. Lower Aptian. Section 17.

Previous occurrence. The type material was described from the upper Albian, Peace River area, Canada (Singh, 1971).

Fromea sp. 1 Plate 9, Figs 6–7

Description. The cysts described as Fromea sp. 1 include long (approximately 150 μ) slender (width approximately 60 μ), conical cysts, which are narrow antapically and wider apically at the archeopyle. The operculum is always detached. Accessory archeopyle sutures have not been observed. The cyst surface is shagreenate. Two longitudinal folds often occur (Plate 9, Fig. 6). The folds start at the antapex and continue as a long V-shape along the cyst to the archeopyle margin. The species differs from *F. nicosia* Jansonius, 1989, by its conical shape, smaller size and two folds.

Occurrence in East Greenland. Barremian to Albian. Sections 6, 7, 10, 17, 21, 22, 24, 25, 35, 36, 39 and 40.

- Fig. 1. Fromea aff. F. expolita × 500, section 24; GGU 346461–4, 21.1–121.3; MGUH 21784.
- Fig. 2. Fromea aff. F. expolita × 500, section 24; GGU 346461-4, 7.7-119.1; MGUH 21785.
- Fig. 3. Fromea aff. F. expolita × 500, section 37; GGU 324655–3, 2.4–156.4; MGUH 21786.
- Fig. 4. Fromea aff. F. expolita × 500, section 30; GGU 342618-4, 19.8-123.1; MGUH 21787.
- Fig. 5. Fromea cf. F. glabella × 500, section 17; GGU 342169–4, 21.9–135.0; MGUH 21788.
- Fig. 6. Fromea sp. 1 × 500, section 24; GGU 346458-4, 19.0-123.0; MGUH 21789.
- Fig. 7. Fromea sp. 1 × 500, section 25; GGU 346440-4, 16.1-157.1; MGUH 21790.
- Fig. 8. Gochteodinia villosa multifurcata × 500, section 18, GGU 342218–4, 11.6–143.0; MGUH 21791.
- Fig. 9. Gonyaulacysta aff. G. cassidata × 500, section 1; GGU 360375–3, 17.6–129.5; MGUH 21792.
- Fig. 10. Gonyaulacysta aff. G. cassidata × 500, section 1; GGU 360380–3, 22.5–145.0; MGUH 21793.
- Fig. 11. Gonyaulacysta fastigiata × 500, section 10; GGU 342093–8, 17.3–132.3; MGUH 21794.
- Fig. 12. Gonyaulacysta fastigiata × 500, section 11; GGU 342105-4, 14.5-127.0; MGUH 21795.
- Figs 13 & 14. Gonyaulacysta helicoidea helicoidea × 500, section 9, GGU 342071-4, 6.8-120.7; MGUH 21796.
- Fig. 15. Gonyaulacysta perforobtusa × 500, section 18; GGU 342219–4, 12.2–127.9; MGUH 21797.
- Fig. 16. *Heslertonia heslertonensis* × 500, section 14; GGU 342133–4, 10.7–131.2; MGUH 21798.
- Fig. 17. Hystrichodinium aff. H. furcatum × 500, section 7; GGU 342081–4, 17.2–129.0; MGUH 21799.
- Fig. 18. Hystrichodinium aff. H. furcatum × 500, section 1; GGU 360375–3, 11.5–128.5; MGUH 21800.

70

Genus Gochteodinia Norris, 1978 Gochteodinia villosa (Vozzhennikova, 1967) Norris, 1978 Gochteodinia villosa subsp. multifurcata Davey, 1982b Plate 9, Fig. 8

Occurrence in East Greenland. Only a few specimens have been observed in three samples from sections 9, 18, and 21, where the subspecies occurs in the lower part of the range of *Pseudoceratium anaphrissum* together with *Nelchinopsis kostromiensis*. The three samples have been dated as upper Hauterivian? – lower Barremian.

Previous occurrences. Gochteodinia villosa subsp. multifurcata was previously recorded from upper Ryazanian and lower Valanginian in the Haldager No. 1 borehole, Denmark, by Davey (1982b, type material). Duxbury (1977) reported the species (as Pareodinia dasyforma) from the lower Hauterivian at Speeton, England. Heilmann-Clausen (1987) reported the species from the lower Valanginian and lower Hauterivian in north-west Europe. Thusu (1978) illustrated several specimens of Gochteodinia villosa (as Imbatodinium villosum) from Arctic Norway. Three of Thusu's illustrations (plate 4, figs 6,7,10) show specimens of G. villosa multifurcata. Thusu (1978) showed on his range-chart that G. villosa (as I. villosum) occurs from Ryazanian through to Barremian in Arctic Norway which indicates that G. villosa villosa and G. villosa multifucata might range up to the Barremian in the Arctic. Aarhus et al. (1986; Århus et al., 1990) have also recorded G. villosa from the lower Barremian offshore south Norway and from the Barents Sea but consider the specimens as reworked.

The possibility that *G. villosa multifurcata* could range up into Barremian in the Arctic is not excluded but previous stratigraphic observations point to the fact that the present specimens have been reworked.

Genus Gonyaulacysta Deflandre, 1964; emend. Sarjeant, 1982b Gonyaulacysta aff. G. cassidata (Eisenack & Cookson, 1960) Sarjeant, 1966b Plate 9, Figs 9–10

Comments. The few specimens hereby assigned to *G*. aff. *G. cassidata* have less pronounced tubercles and are slightly shorter than the type material of *G. cassidata*.

Occurrence in East Greenland. The species has only been recorded from the upper Barremian section 1, and the Aptian section 13.

Previous occurrences. Gonyaulacysta cassidata was previously recorded from the Cenomanian, England (Sarjeant, 1966a), the lower Aptian to upper Cenomanian, England and the North Sea (Costa & Davey, 1992), the lower Barremian to upper Cenomanian, north-west Germany (Prössl, 1990) and world-wide from the upper Hauterivian to lower Turonian (Williams & Bujak, 1985). The type material was described from the Aptian to Cenomanian in Australia by Eisenack & Cookson (1960).

Gonyaulacysta fastigiata Duxbury, 1977 Plate 9, Figs 11-12

Comments. The specimens recorded in the present study often have very pronounced denticles on the tabular crests.

Occurrence in East Greenland. Lower to lower part of the upper Barremian. Sections 4, 9, 10, 11, 16, 18 and 21.

Previous occurrences. Gonyaulacysta fastigiata was previously recorded from the lower Hauterivian to lowermost Barremian, north-west Germany (Prössl, 1990), 'middle' Barremian, Speeton, England (Duxbury, 1980, type material), whereas Harding (1990b) reported a last occurrence at the top of the lower Barremian at Speeton, England and at Gott, Germany, lower Hauterivian to top lower Barremian, England and the North Sea (Costa & Davey, 1992), Ryazanian to upper? Hauterivian in North Sea wells (Heilmann-Clausen, 1987), lower Hauterivian, Andøya, Norway (Aarhus *et al.*, 1986), Hauterivian to lower Barremian, Barents Sea (Århus *et al.*, 1990), Hauterivian and lower Barremian, offshore south Norway (Aarhus *et al.*, 1986) and Ryazanian and Valanginian from Arctic Norway (Thusu, 1978).

Gonyaulacysta fastigiata has its last occurrence in the 'middle' Barremian (now upper Barremian) according to Duxbury's (1980) ammonite dated material from Speeton, England.

Gonyaulacysta helicoidea (Eisenack & Cookson, 1960) Sarjeant, 1966b subsp. helicoidea Lentin & Williams (1973). Plate 9, Figs 13-14

Occurrence in East Greenland. Lower Barremian to lower Aptian. Sections 1, 6, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 21 and 33.

Previous occurrences. Previously recorded from the Hauterivian and Barremian, Speeton, England (Duxbury, 1977; 1980), Aptian, south England (Lister & Batten, 1988), Albian, south-east France (Davey & Verdier, 1971), the upper Hauterivian to lower Cenomanian in north-west Germany (Prössl, 1990), Ryazanian to Aptian, offshore south-east Norway (Aarhus *et al.*, 1986), the lower Barremian, Barents Sea, Norway (Århus *et al.*, 1986), the middle Albian, Peace River area, central Alberta, Canada (Singh, 1971), the middle Albian, District of Mackenzie, Canada (Brideaux & McIntyre, 1975), the Neocomian to Aptian, Australia (Eisenack & Cookson, 1960, type material) and lower Hauterivian to lower Cenomanian, world-wide (Williams & Bujak, 1985).

Gonyaulacysta jurassica (Deflandre, 1938b) emend. Sarjeant, 1982b

Comments. The species is rare and considered reworked as, according to the literature, it has never been reported *in situ* from above the Upper Jurassic.

Occurrence in East Greenland. Barremian. Sections 9, 10, 11, 15, 17, 18 and 21.

Gonyaulacysta perforobtusa Duxbury, 1977 Plate 9, Fig. 15

Occurrence in East Greenland. Lowermost Barremian. Sections 10 and 18, where it is very rare.

Previous occurrences. Gonyaulacysta perforobtusa was previously recorded from the Hauterivian, Speeton, England (Duxbury, 1977, type material), the lower and upper Hauterivian, north-west Germany (Prössl, 1990), the Hauterivian and possible lower Barremian in north-west Europe (Heilmann-Clausen, 1987) and lower Barremian, offshore south-east Norway (Aarhus *et al.*, 1986).

Genus Hapsocysta Davey 1979b Hapsocysta? benteae sp. nov. Plate 25, Figs 11-12, Text Figs 10-11

- ?1962b Stephodinium australicum; Cookson & Eisenack, plate 2, figs 5 & 10 only.
- 1982a ?Hapsocysta sp.; Davey, p. 377, taf. 6.3–3, fig. 1.
 1983 Stephodinium australicum; Singh, plate 57, figs
- 5 & 6.
- 1991 ?Hapsocysta sp. of Davey 1982a; Århus, fig. 7.
- 1992 Hapsocysta? sp. of Davey 1982a; Costa & Davey, plate 3.5, fig. 6.

Origin of name. After my wife Bente Meldgaard Clausen.

Diagnosis. The species is represented by camocavate,

lenticular cysts with a circular equatorial outline in polar view. The cysts are thin-walled, hyaline and apical/antapically compressed with a smaller, spherical, dorsally attached endocyst with a smooth surface. The surface of the periphragm is also smooth but ornamented by low sutural ribs reflecting a gonyaulacoid tabulation pattern. A precingular archeopyle (type P) may be distinguished on the

Description

Cyst type. Camocavate with a large ventral pericoel.

dorsal side, whereas a sulcal opening (an opisthopyle) is

always present on the ventral surface of the pericyst.

Shape. The cyst is lenticular with a circular equatorial outline in polar view.

Wall relationships. The cyst is composed of a thin-walled (less than 1μ), hyaline, tabulate pericyst, and a smaller endocyst approximately half the diameter of the pericyst. The endocyst is smooth thin walled, hyaline, lenticular with a circular equatorial outline in polar view and often folded probably due to the apical/antapical compression of the cyst. Periphragm and endophragm are dorsally appressed.

Tabulation. Low sutural ribs on the periphragm indicate tabulation, which is gonyaulacoid with an S-type ventral pattern (Evitt, 1985). Formula ?4', 6", 6c, 1p, 6"', 1"'' (Figs 10–11). Five sulcal plates have been distinguished: the posterior sulcal plate (ps), the right sulcal plate (rs), the left sulcal plate (ls), the right accessory plate (ras) and the anterior sulcal plate (as). An almost circular opening in the sulcal area (an opisthopyle) is always present on the pericyst. The opening is demarcated by the plates: as, ras, rs, ls and 1"' (Figs 10–11).

Archeopyle. A precingular archeopyle may be distinguished on the dorsal side.

Holotype. Plate 25, Fig. 11; Text Fig. 10, MGUH 21988 from GGU 342240–4, 10,0–140,0.

Type locality. Section 21, Stratumbjerg, Wollaston Forland, East Greenland (Fig. 2).

Dimensions. Holotype: diameter of pericyst 78 μ , diameter of endocyst 44 μ .

Size range. Diameter of pericyst 60 (71) 85 μ (10 specimens), diameter of endocyst 36 (40) 45 μ (10 specimens).

Discussion. The species has been assigned to the genus

Fig. 10. Hapsocysta? benteae sp. nov., the holotype, also shown in Plate 25, Fig. 11 from section 21; GGU 342240-4, 10.0-140.0. The tabulation, opisthopyle and outline of inner body (stippled) are shown. (a) internal apical view. (b) external antapical view.

Hapsocysta with a question mark, due to the presence of a thin walled periphragm. In the diagnosis of the genus *Hapsocysta* Davey (1979a) described the periphragm to have a net-like structure, where the areas between the strands may be filled with a subsidiary network.

Hapsocysta? benteae sp. nov. differs from *Stephodinium australicum* by the smaller diameter of the pericyst, by being apical/antapically compressed, by being tabulate and by having the endocyst situated dorsally. The equatorial, wing-like outgrowth described and illustrated by Cookson & Eisenack (1962b, p. 491, plate 2, figs 6–9) has not been observed in the present material.

Occurrence in East Greenland. Lower to upper Albian. Sections 13, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39 and 40. The species never dominates the dinoflagellate cyst assemblages but seems to be a good marker species for the Albian in East Greenland.

Previous occurrences. Hapsocysta? benteae sp. nov. was previously recorded from the upper Aptian and lower

Albian, north-west Germany, as ?*Hapsocysta* sp. (Davey, 1982a), upper Aptian to Upper Cretaceous, North Sea area, as *Hapsocysta*? sp. of Davey 1982a (Costa & Davey, 1992), middle Albian, Barents Sea (Århus, 1991), upper? Albian and Cenomanian, Peace River area, Canada as *S. australicum* (Singh, 1983) and upper Albian to Cenomanian in Australia as *S. australicum* (Cookson & Eisenack, 1962b, plate 2, figs 5 & 10 only). The present author has also recorded the species from the lower and middle Albian, Axel Heiberg Island, Arctic Canada.

Genus Heslertonia Sarjeant, 1966b; emend. Duxbury, 1980 Heslertonia heslertonensis (Neale & Sarjeant, 1962) Sarjeant 1966b; emend. Duxbury, 1980 Plate 9, Fig. 16

Occurrence in East Greenland. Lower Barremian to lower Aptian. Sections 1, 3, 6, 7, 8, 9, 10, 11, 14, 15, 17,

Fig. 11. *Hapsocysta? benteae* sp. nov., same specimen as Plate 25, Fig. 12 from section 30; GGU 342619–3, 10.2–131.0. The opisthopyle and tabulation, with emphasis on the sulcal plates are shown. (a) external apical view. (b) internal antapical view. 18, 19, 21, 26, 32 and 33. One questionable specimen was recorded from the lower Albian section 26.

Previous occurrences. Heslertonia heslertonensis was previously recorded from the Hauterivian and Barremian, Speeton, England (Neale & Sarjeant, 1962, type material), the upper Ryazanian to lower Aptian, England and the North Sea (Costa & Davey, 1992), the lower Hauterivian to middle Albian, north-west Germany (Prössl, 1990), upper Ryazanian to lower, or possibly upper Aptian in north-west Europe (Heilmann-Clausen, 1987), and world-wide (Williams & Bujak, 1985).

Genus Hystrichodinium Deflandre, 1935b; emend. Sarjeant, 1966b Hystrichodinium aff. H. furcatum Alberti, 1961 Plate 9, Figs 17–18

Comments. The relatively few specimens recorded in the present study differ slightly in body shape from the type material described by Alberti (1961) and the processes are significantly longer than on the holotype. Also the distal furcation of the processes have shorter branches.

Occurrence in East Greenland. Upper part of lower Barremian? to lowermost Aptian. Hystrichodinium aff. H. furcatum is very rare in the uppermost lower Barremian. Only a few specimens were recorded in the Pseudoceratium anaphrissum Subzone in sections 9 and 11. The species is more common in the upper Barremian Pseudoceratium toveae Subzone in sections 1, 6, 7, 8, 14, 17, 19, and 21. Only two specimens were recorded from the lower Aptian Pseudoceratium nudum Zone in section 17, GGU 342168.

Previous occurrences. Hystrichodinium furcatum was previously recorded from the lower Hauterivian to lower Barremian, England and the North Sea (Costa & Davey, 1992), lower Hauterivian to the lower part of the 'middle' Barremian in north-west Europe where, according to Heilmann-Clausen (1987), it has its last occurrence in the lower part of the range of *P. anaphrissum*, lower Hauterivian to the middle part of the upper Barremian, northwest Germany (Prössl, 1990).

Harding (1990b) indicated that the species has a very short stratigraphic range restricted to lowermost Barremian in Germany and England. Harding (1990b) mentioned that Alberti's (1961) Hauterivian recording of the type material might be wrongly dated due to unreliable borehole material. Århus *et al.* (1990) have observed the species from Valanginian–Hauterivian? in the Barents Sea. Williams & Bujak (1985) indicate that the species has a world-wide range from the middle part of the upper Valanginian to the top of the lower Aptian.

In conclusion, the information given above indicates that *H. furcatum* is a lower Barremian marker in northwest Europe where it occurs below and in the lower part of the range of *P. anaphrissum* in contrast to *H.* aff. *H. furcatum* which tends to be an upper Barremian marker in East Greenland, where it has only been recorded in the upper part of and above the range of the species *P. anaphrissum*.

Hystrichodinium pulchrum Deflandre, 1935 subsp. *pulchrum* Lentin & Williams 1973 Plate 10, Figs 1–2

Comments. In the present study, the subspecies has been distinguished from *Hystrichodinium voigtii* by the presence of tubercles, its lower sutural crests and by having more processes.

Occurrence in East Greenland. Middle Albian. Sections 20 and 23.

Previous occurrences. The type material was described from Senonian in France by Deflandre (1935). Costa & Davey (1992) recorded *H. pulchrum* from the upper Bathonian (Jurassic) to upper Maastrichtian, England and the North Sea. Williams & Bujak (1985) recorded the species from all Cretaceous stages, world-wide.

Hystrichodinium ramoides Alberti, 1961 Plate 10, Fig. 3

Comments. The species, rare in the material from East Greenland, is characterised by processes that distally furcate more than once.

Occurrence in East Greenland. In the upper Barremian *Pseudoceratium toveae* Subzone, where it occurs together with *H*. aff. *H. furcatum* and *P. toveae* sp. nov., and above the last occurrence of *Pseudoceratium anaphrissum* in sections 7, 14 and 19.

Previous occurrences. Hystrichodinium ramoides was previously recorded from the 'middle' and upper Barremian, Speeton, England (Duxbury, 1980), lower and upper Barremian, England and the North Sea (Costa & Davey, 1992), the Hauterivian to uppermost Barremian, north-west Germany (Prössl, 1990). Harding (1990b, p. 52) mentions that "This species has an extremely short vertical range within the latest Barremian time" in Germany and England. The type material was described from the upper Barremian in Germany by Alberti (1961) and Heilmann-Clausen (1987) recorded the species from the upper part of the lower Barremian, 'middle' Barremian and upper Barremian in north-west Europe.

Remarks. According to Harding (1990b) *H. ramoides* has no overlap with the lower Barremian species *H. furcatum*. The occurrence of *H. ramoides* in East Greenland correlates with Harding's (1990b) latest Barremian range for the species, but differs by not being present above the last occurrence of *H.* aff. *H. furcatum*.

Hystrichodinium voigtii (Alberti, 1961; emend. Sarjeant, 1966b) Davey, 1974 Plate 10, Figs 4–5

Occurrence in East Greenland. Lower Barremian to lower Aptian. Sections 1, 7, 8, 9, 10, 11, 14, 16, 17, 18, 19, 21 and 33.

Previous occurrences. Hystrichodinium voigtii was previously recorded from the lower Hauterivian to upper Turonian, north-west Germany (Prössl, 1990), Barremian to lower Aptian, Germany (Alberti, 1961, type material) and from the Jurassic to upper Albian in North Sea wells (Heilmann-Clausen, 1987).

Genus Hystrichosphaeridium Deflandre, 1937b; emend. Davey & Williams, 1966b Hystrichosphaeridium arborispinum Davey & Williams, 1966b Plate 10, Figs 6-9

Occurrence in East Greenland. Upper part of lower and upper Barremian. Sections 1, 4, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19 and 21. The species is common to dominant in the uppermost part of the lower Barremian and in the lowermost part of the upper Barremian (see section 21).

Previous occurrences. Hystrichosphaeridium arborispinum was previously recorded from the lower and 'middle' Barremian, Speeton, England (Davey and Williams, 1966b, type material), the uppermost lower, 'middle' and lowermost upper Barremian, Speeton, England (Duxbury, 1980), the lower Hauterivian to upper Barremian, England and the North Sea (Costa & Davey, 1992), the 'middle' and upper Barremian, north-west Europe (Heilmann-Clausen, 1987) and the middle part of the lower to the middle part of the upper Barremian, north-west Germany (Prössl, 1990). Harding (1990b) mentioned that the species is extremely common in the middle? to upper part of lower Barremian but becomes rare in the upper Barremian of Germany and England. Harding's observation seems consistent with the present study. Outside of Europe the species has been recorded from the lower Barremian to the lowermost Aptian in Arctic Canada by Pocock (1976).

Genus Hystrichosphaerina Alberti, 1961 Hystrichosphaerina schindewolfii Alberti, 1961

Plate 10, Figs 10-13

Comments. Alberti (1961) mentioned in his description of the species that a few long thin processes are arranged in the equatorial zone. Davey (1982b) likewise indicates that the genus *Hystrichosphaerina* has solid cingular processes, but mentioned also that they sometimes may be absent. In the present material, both forms with (Plate 10,

- Fig. 1. Hystrichodinium pulchrum × 500, section 20; GGU 342189-4, 13.9-145.1; MGUH 21801.
- Fig. 2. Hystrichodinium pulchrum × 500, section 23; GGU 351686–4, 12.0–137.0; MGUH 21802.
- Fig. 3. Hystrichodinium ramoides × 500, section 7; GGU 342081-4, 3.5–135.2; MGUH 21803.
- Fig. 4. Hystrichodinium voigtii × 500, section 10; GGU 342094–4, 13.2–127.0; MGUH 21804.
- Fig. 5. Hystrichodinium voigtii × 580, section 21; GGU 342232; MGUH 21805.
- Fig. 6. Hystrichosphaeridium arborispinum × 500, section 14; GGU 342216–4, 3.3–127.0; MGUH 21806.
- Fig. 7. *Hystrichosphaeridium arborispinum* × 500, section 7; GGU 342081–4, 17.4–157.1; MGUH 21807.
- Fig. 8. Hystrichosphaeridium arborispinum × 850, section 18; GGU 342222; MGUH 21808.
- Fig. 9. Hystrichosphaeridium arborispinum × 1600, same specimen as above close-up of processes, section 18; GGU 342222.
- Fig. 10. Hystrichosphaerina schindewolfii × 500, specimen with cingular processes, section 7; GGU 342081–4, 7.6–137.0; MGUH 21809.
- Fig. 11. Hystrichosphaerina schindewolfii × 550, specimen with cingular processes, section 7; GGU 342081; MGUH 21810.
- Fig. 12. Hystrichosphaerina schindewolfii × 500, specimen without (?) cingular processes, section 21; GGU 342237–4, 17.4–155.0; MGUH 21811.
- Fig. 13. Hystrichosphaerina schindewolfii × 550, specimen without cingular processes, section 7; GGU 342081; MGUH 21812.

76

Figs 10-11) and without (Plate 10, Figs 12-13) cingular processes have been recorded and referred to the species.

Occurrence in East Greenland. The upper part of the lower Barremian to lower Aptian. Sections 1, 6, 7, 8, 9, 11, 14, 15, 17, 18, 19, 21 and 33. One specimen has been observed from the lower Albian. Section 26.

Previous occurrences. Hystrichosphaerina schindewolfii was previously recorded from the upper Barremian, Turonian and Senonian, Germany (Alberti, 1961, type material), the uppermost lower, 'middle' and lowermost upper Barremian, Speeton, England (Duxbury, 1980), the lower Valanginian to lower Albian, England and the North Sea (Costa & Davey, 1992), the upper Barremian to upper Aptian, south England (Lister & Batten, 1988), the lower Hauterivian to the upper part of the lower Albian, northwest Germany (Prössl, 1990), lower Barremian to lower Aptian, and upper Aptian to lower Albian in north-west Europe (Heilmann-Clausen, 1987), Valanginian in Denmark, Davey (1982b), lower Hauterivian to upper Aptian, District of Mackenzie, Canada (Brideaux, 1977) and upper Hauterivian to upper Albian, world-wide (Williams & Bujak, 1985).

Genus Kiokansium Stover & Evitt, 1978; emend. Duxbury, 1983 Kiokansium polypes (Cookson & Eisenack, 1962b) Below, 1982c subsp. polypes Lentin & Williams (1986) Plate 11, Figs 2–8

Comments. The specimens herein referred to *Kiokansium* polypes polypes have a spheroidal cyst with forty, or often more, slender processes that distally are fringed with short, straight to recurved tips.

Occurrence in East Greenland. Lower Barremian to upper Albian. The subspecies has been recorded from 30 sections. The abundance varies throughout the examined stages but the species often constitutes 5% or more of the assemblage.

Previous occurrences. Kiokansium polypes polypes was previously recorded from Hauterivian to Cenomanian, Speeton, England (Duxbury, 1977), lower Hauterivian to upper Albian, north-west Germany (Prössl, 1990) and upper Hauterivian to lowermost? Albian in a North Sea well (Heilmann-Clausen, 1987). The type material was described from the Albian to Cenomanian in Australia by Cookson & Eisenack (1962b).

Genus Kleithriasphaeridium Davey, 1974 Kleithriasphaeridium corrugatum Davey, 1974 Plate 11, Fig. 10

Occurrence in East Greenland. Lower Barremian and lowermost part of the upper Barremian; sections 9, 15, 16, 18 and 21. The species is very rare to rare in the studied material.

Previous occurrences. Kleithriasphaeridium corrugatum was previously recorded from the lower Barremian, Speeton, England (Davey, 1974, type material), the lowermost part of the 'middle' Barremian, Specton, England (Duxbury, 1980), the upper Ryazanian to upper Barremian, England and the North Sea (Costa & Davey, 1992), the uppermost lower Hauterivian to the middle 'middle' Barremian, north-west Germany (Prössl, 1990). Harding (1990b, p. 52) mentions that the species "becomes extinct at the end of the lower Barremian". The species has been

- Fig. 1. *Pareodinia* sp. × 500, section 21; GGU 342240-4, 20.1–140.2; MGUH 21813.
- Fig. 2. *Kiokansium polypes polypes* × 500, section 10; GGU 342094-4, 11.8–128.7; MGUH 21814.
- Fig. 3. *Kiokansium polypes polypes* × 500, section 20; GGU 342186–4, 7.7–133.9; MGUH 21815.
- Fig. 4. Kiokansium polypes polypes × 500, section 17; GGU 342167-4, 7.1-140.1; MGUH 21816.
- Fig. 5. *Kiokansium polypes polypes* × 500, section 10; GGU 342092–4, 20.8–142.3; MGUH 21817.
- Fig. 6. *Kiokansium polypes polypes* × 800, section 17; GGU 342161; MGUH 21818.
- Fig. 7. Kiokansium polypes polypes × 550, section 17; GGU 342161; MGUH 21819.
- Fig. 8. Kiokansium polypes polypes × 750, section 17; GGU 342161; MGUH 21820.
- Fig. 9. Leiofusa sp. × 500, section 31; GGU 324627-4, 16.5-129.5; MGUH 21821.
- Fig. 10. *Kleithriasphaeridium corrugatum* × 500, section 15; GGU 351526-4, 13.9–127.0; MGUH 21822.
- Fig. 11. Kleithriasphaeridium eoinodes × 500, section 19; GGU 342214–4, 13.4–143.0; MGUH 21823.
- Fig. 12. Leptodinium cancellatum × 500, section 12; GGU 351589-4, 12.2–135.0; MGUH 21824.
- Fig. 13. Leptodinium cancellatum × 500, section 20; GGU 342176–4, 11.3–150.2; MGUH 21825.
- Fig. 14. Leptodinium? cf. L. delicatum × 500, section 23; GGU 351676–4, 21.8–136.0; MGUH 21826.
- Fig. 15. Leptodinium? hyalodermopse × 500, section 17; GGU 342167–4, 9.7–124.0; MGUH 21827.

recorded from the upper Ryazanian to the 'middle' Barremian in north-west Europe (Heilmann-Clausen, 1987). Williams & Bujak (1985) have an lower Barremian last occurrence for the species, world-wide.

Remarks. The last occurrence of the species in the lowermost 'middle' Barremian (now lowermost upper Barremian) recorded by Duxbury (1980; Costa & Davey, 1992), in the 'accurate' dated Specton section, correlates with the observations from East Greenland.

Kleithriasphaeridium eoinodes (Eisenack, 1958) Davey, 1974; emend. Sarjeant, 1985a Plate 11, Fig. 11

Remarks. The present study follow Below's (1982a) consideration that *K. simplicispinum* is a jr syn. of *K. eoinodes*.

Occurrence in East Greenland. Lower Barremian to middle Albian. Sections 1, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 26, 32 and 33.

Previous occurrences. Kleithriasphaeridium eoinodes was previously recorded from the upper Barremian to the uppermost Albian in north-west Germany, Prössl (1990), whereas Heilmann-Clausen (1987) reported the species from upper Ryazanian to middle Albian in north-west Europe and Williams & Bujak (1985) reported a lower Valanginian to 'middle' Barremian world-wide range. The type material was described from the upper Aptian in Germany by Eisenack (1958). The European range correlates with the present observations.

Genus Lagenadinium Piel, 1985 Lagenadinium? membranoidium (Vozzhennikova, 1967); emend. Lentin & Vozzhennikova, 1990 Plate 5, Fig. 6

Comments. One specimen with a pronounced corona was observed. On the other observed specimens the corona is usually indistinct.

Occurrence in East Greenland. Lower Barremian to middle Albian and rare specimens from the upper Albian. Sections 1, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 25 and 30.

Previous occurrences. Lagenadinium? membranoidium was previously recorded as Chlamydophorella membra*noidea* from the Hauterivian, upper Barremian and upper Aptian, north-west Europe and North Sea wells (Heilmann-Clausen, 1987). The type material was described from Upper Jurassic, Russia by Vozzhennikova (1967).

Genus Leptodinium Klement, 1960; emend. Sarjeant, 1982b Leptodinium cancellatum Brideaux & McIntyre, 1975 Plate 11, Figs 12-13

Comments. The species is easily distinguished, even in fragments, due to the intratabular apiculate to vermiculate sculpture.

Occurrence in East Greenland. Upper part of the lower Aptian to uppermost part of the middle Albian. Sections 12, 13, 17, 20, 21, 22 and 23. The species seems to be a good stratigraphic marker although it seldom constitutes more than 1% of the dinoflagellate cyst assemblages.

Previous occurrences. Leptodinium cancellatum was previously recorded from the uppermost Aptian to lower Albian, Germany (Davey, 1982a), upper Aptian to lower upper Albian in England and the North Sea (Costa & Davey, 1992), the uppermost Aptian to lowermost Albian, north-west Europe (Heilmann-Clausen, 1987), lower? Albian, Peary Land, North Greenland and upper Aptian to middle Albian, Barents Sea (Århus, 1991) and the middle Albian, District of Mackenzie, Canada (Brideaux & McIntyre, 1975).

Leptodinium? cf. L. delicatum (Davey, 1969a) Sarjeant in Davey et al., 1969 Plate 11, Fig. 14

Comments. The few recorded specimens are often fragmented. They have a thin smooth hyaline wall, with tabulation defined by crests. The crests may be a little higher than on the type material described by Davey (1969).

Occurrence in East Greenland. Uppermost lower Aptian to lowermost upper Albian. Sections 13, 23 and 29.

Previous occurrences. Leptodinium? delicatum was previously recorded from the middle Albian, District of Mackenzie, Canada (Brideaux & McIntyre, 1975), Barremian, District of Mackenzie, Canada (Brideaux, 1977) and Cenomanian, Saskatchewan, Canada (Davey, 1969, type material).

Leptodinium? hadrum (Sarjeant, 1966b) Helenes, 1984 Plate 12, Fig. 1

Occurrence in East Greenland. Uppermost Barremian. Sections 7, 14 and 17.

Previous occurrence. Leptodinium? hadrum was previously recorded (as Gonyaulacysta hadra) from the upper Barremian, England (Sarjeant, 1966a, type material).

Leptodinium? hyalodermopse (Cookson & Eisenack, 1958) Stover & Evitt, 1978 Plate 11, Fig. 15

Occurrence in East Greenland. Lower Barremian to top lower Albian. Sections 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 26, 32, 33 and 34.

Previous occurrences. Leptodinium? hyalodermopse was previously recorded from the Hauterivian to the middle part of the lower Albian (as *Rhynchodinium hyalodermopse*) north-west Germany (Prössl, 1990), lower? Albian, Peary Land, North Greenland and uppermost lower Albian to lowermost middle Albian, Barents Sea, as *Gonyaulacysta hyalodermopsis* (Århus, 1991), middle Albian, District of Mackenzie, Canada (Brideaux & McIntyre, 1975), Barremian, District of Mackenzie, Canada (Brideaux, 1977), and upper Neocomian to Aptian, Australia (Cookson & Eisenack, 1958, type material).

Genus Levisphaera Davey, 1988 Levisphaera cf. L. crassicingulata (Burger, 1980) Davey, 1988 Plate 1, Figs 10-12

Comments. Ovoidal cyst with a psilate surface. The wall is apparently composed of one layer, the autophragm. The wall is thin, less than 1 μ , and hyaline. The archeopyle is apical occasionally with the operculum attached. The length of the cyst, excluding the operculum is 40–45 μ . The width of the cyst is 36–43 μ .

Remarks. Levisphaera cf. L. crassicingulata differs from the type material (Burger, 1980), by being smaller. L. cf. L. crassicingulata differs from Batiacasphaera euteiches (Davey, 1969a) Davey, 1979d by having a thin, hyaline and psilate wall. The size, shape and wall features of L. cf. L. crassicingulata are similar to Chytroeisphaeridia chytroeides (Sarjeant, 1962a) Downie & Sarjeant, 1965; emend. Davey, 1979b. However L. cf. L. crassicingulata differs by having an apical archeopyle in contrast to the precingular archeopyle characteristic for *C. chytroeides*.

Occurrence in East Greenland. Lower Barremian to upper Albian. The species occurs in 31 of the 40 examined sections and is often common.

Previous occurrences. Burger (1980) described the species as *Canningia crassicingulata* from the Neocomian in Australia and Davey (1988) recorded the species as *L. crassicingulata* from the Kimmeridgian (Jurassic), Papua New Guinea.

Genus *Litosphaeridium* Davey & Williams, 1966b; emend. Lucas-Clark, 1984 *Litosphaeridium arundum* (Eisenack & Cookson, 1960) Davey, 1979b; emend. Lucas-Clark, 1984 Plate 12, Figs 2-3

Occurrence in East Greenland. From top lower Albian? – base middle Albian to the middle part of the upper Albian. Sections 5, 20, 22, 23, 26, 29, 30, 31 and 40.

Previous occurrences. Litosphaeridium arundum was previously recorded from the upper Aptian to upper Albian, France (Davey & Verdier, 1971, 1974), the lower to upper Albian, England and the North Sea (Costa & Davey, 1992), the uppermost lower Albian to middle part of the late Albian, north-west Germany (Prössl, 1990), lower Albian to lowermost upper Albian, north-west Europe (Heilmann-Clausen, 1987), Aptian – lower Albian to middle Albian, Spitsbergen and middle Albian, Barents Sea (Århus, 1991), middle to upper Albian, western Canada (Brideaux, 1971; Singh, 1971) and uppermost lower Albian to lowermost Cenomanian, world-wide (Williams & Bujak, 1985). The type material was described from the Albian in Australia by Eisenack & Cookson (1960).

Litosphaeridium siphoniphorum (Cookson & Eisenack, 1958) Davey & Williams, 1966b Plate 12, Fig. 4

Occurrence in East Greenland. Only two specimens have been recorded from the upper Albian. Sections 24 and 35.

Previous occurrences. Litosphaeridium siphoniphorum was previously recorded from the upper Albian in southeast France (Davey & Verdier, 1973), the upper Albian to lower Turonian, England and the North Sea (Costa & Davey, 1992) and the upper Albian to lower Cenomanian, north-west Europe (Heilmann-Clausen, 1987). The species is a marker for uppermost Albian to the top Cenomanian in Europe (Foucher, 1981). The type material was described from the Albian to Cenomanian in Australia by Cookson & Eisenack (1958).

Genus *Luxadinium* Brideaux & McIntyre, 1975 *Luxadinium* sp. Plate 12, Fig. 5

Comments. A few thin-walled, almost hyaline, cavate specimens with a large acheopyle (tI?,3P) have been recorded from the lower part of the upper Albian. Sections 30 and 31.

Genus Meiourogonyaulax Sarjeant, 1966b Meiourogonyaulax stoveri Millioud, 1969 Plate 12, Figs 9–10

Occurrence in East Greenland lower Barremian. Sections 9, 10, where the species is rare.

Previous occurrences. Meiourogonyaulax stoveri was previously recorded from the lower Hauterivian to lowermost Albian, England and the North Sea (Costa & Davey, 1992), the uppermost Hauterivian to uppermost 'middle' Barremian, north-west Germany (Prössl, 1990), Hauterivian to Aptian, western Europe (Millioud, 1969, type material), lower and upper Aptian, south England (Lister & Batten, 1988), Hauterivian and older to upper Albian, offshore eastern Canada (Williams, 1975; Bujak & Williams, 1978), upper Hauterivian to lower Aptian, Arctic Canada (Pocock, 1976) and upper Hauterivian to lowermost Albian, world-wide (Williams & Bujak, 1985).

Genus Muderongia (Cookson & Eisenack, 1958)

Remarks. The emendation and the new morphographic approach proposed for the genus and species of *Muderongia* by Monteil (1991) is not followed due to the relative sparse occurrence of specimens of the genus *Muderongia* in the present study.

Muderongia australis Helby, 1987 Plate 12, Fig. 12

Comments. The specimens recorded in the present study have cingular horns projecting laterally from the cingulum. The horns are slightly longer than the stout lateral bosses described by Helby (1987, p. 300), but are shorter than the cingular horns on *Muderongia macwhaei* Cookson & Eisenack, 1958; emend. Helby, 1987.

Occurrence in East Greenland. Lower Barremian. Sections 9, 10 and 15. The species dominates the assemblages in a restricted interval in section 10.

Previous occurrences. Muderongia australis was previously recorded from lowermost Hauterivian, north-west Germany (Prössl, 1990). The species has also been reported in large numbers from a restricted interval in the Hauterivian, the uppermost part of the Rurikfjeldet Member at Spitsbergen and from Hauterivian – lower Barremian in the Barents Sea (Århus *et al.*, 1990), Barremian in Australia (Helby, 1987, type material) and lowermost Hauterivian to 'middle' Barremian, Papua New Guniea (Davey, 1988).

- Fig 1. Leptodinium? hadrum × 500, section 14; GGU 342132–6, 11.2–138.2; MGUH 21828.
- Fig. 2. Litosphaeridium arundum × 500, section 23; GGU 351670-4, 19.6-134.2; MGUH 21829.
- Fig. 3. Litosphaeridium arundum × 800, section 20; GGU 342191; MGUH 21830.
- Fig. 4. Litosphaeridium siphoniphorum × 750, section 14; GGU 346451-4, 19.9-119.1; MGUH 21831.
- Fig. 5. *Luxadinium* sp. × 500, section 20; GGU 342176-4, 7.0-122.2; MGUH 21832.
- Fig. 6. Atopodinium haromense × 500, section 14; GGU 342134-4, 6.3-135.5; MGUH 21833.
- Fig. 7. Atopodinium haromense × 500, section 17; GGU 342161–4, 11.0–141.1; MGUH 21834.
- Fig. 8. Atopodinium haromense × 500, section 17; GGU 342162-4, 6.7-143.1; MGUH 21835.
- Fig. 9. Meiourogonyaulax stoveri × 500, external dorsal view illustrating attached apical operculum, vacuolar surface and crests, section 17; 9; GGU 342094–4, 10.4–154.4; MGUH 21836.
- Figs 10 & 11. Meiourogonyaulax stoveri × 500, antapical/apical view illustrating apical archeopyle, vacuolar surface and crests, section 9; GGU 342094–4, 8.1–129.9; MGUH 21837.
- Fig. 12. Muderongia australis × 500, section 10; GGU 342093-4, 23.2–137.9; MGUH 21838.
- Fig. 13. Muderongia extensiva × 500, section 9; GGU 342070–7, 2.2–130.4; MGUH 21839.

Muderongia extensiva Duxbury, 1977 Plate 12, Fig. 13

Comments. A few, possible reworked, specimens are recorded from the lower Barremian, section 9. They have rather long lateral horns extending almost at right angles from the body. The horns are distally notched as originally described by Duxbury (1977, p. 54).

Previous occurrences. Muderongia extensiva was previously recorded from the lower Valanginian to lower Hauterivian, Speeton, England (Duxbury, 1977, type material) and Valanginian to Aptian, Arctic Norway, (Thusu, 1978, plate 2, fig. 7) but Thusu's specimen is not very typical of the species.

Muderongia cf. M. pariata Duxbury, 1983 Plate 13, Fig. 1

Comments. Only one specimen was recorded in the present study. The specimen has the characteristic short lateral horns which are distally blunt, open, and notched. The specimen has also, like *M. pariata*, only one antapical horn but it has not been possible to recognise the distal open part of this horn due to a shadowing particle which covers the tip.

Occurrence in East Greenland. Lower Aptian. Section 33.

Previous occurrences. Muderongia pariata was previously recorded from the lower Aptian to lower Albian, southern England (Duxbury, 1983, type material), 'middle' Barremian and lower Aptian to lower Albian, northwest Europe (Heilmann-Clausen, 1987) and lower to upper Aptian, southern England (Lister & Batten, 1988).

The species is reported from the Barremian in the Barents Sea as *Muderongia perforata* Alberti, 1961 by Århus *et al.* (1990) who proposed the transfer of *M. pariata* into *M. perforata*.

Muderongia simplex Alberti, 1961 Muderongia aff. M. simplex subsp. microperforata Davey, 1982b Plate 13, Figs 2, 3 & 6

Comments. The ends of the lateral horns in the present specimens differs from the type material (Davey, 1982b; plate 9, figs 4–6) by being more pronounced, in contrast to the holotype which only has shorter bulges. The pointed horn terminations on the lateral horns have also been observed by Harding (1986, plate 17, figs 3, 8).

Harding referred his specimens to *M. simplex microperforata*. Uwins & Batten (1988, plate 34, figs 18, 19) reported specimens from Libya, as *Muderongia* sp., which also look very similar to the present material. Århus *et al.* (1990, figs 12D, F) illustrated two specimens which they named *Muderongia* cf. *M. asymmetrica* with lateral horn terminations similar to the present material.

The marked difference of the morphology in specimens from East Greenland, southern England (Harding, 1986), Libya (Uwins & Batten, 1988) and Barents Sea (Århus *et al.*, 1990) from the type material of *M. simplex microperforata* (Davey, 1982b) may indicate that we are dealing with a new subspecies or maybe, more likely, a new species.

Occurrence in East Greenland. The upper part of the lower Barremian to the lower part of the upper Barremian. Sections 9, 11, 16, 18 and 21.

Previous occurrences. Muderongia simplex microperforata was previously recorded from the lower Barremian at Alford, England (Harding, 1990b), upper Ryazanian to

- Fig. 1. *Muderongia* cf. *M. pariata* × 500, section 33; GGU 324029-4, 10.0-143.4; MGUH 21840.
- Fig. 2. Muderongia aff. M. simplex microperforata × 500, section 16; GGU 351512–4, 11.0–138.3; MGUH 21841.
- Fig. 3. Muderongia aff. M. simplex microperforata × 500, section 21; GGU 342231–7, 5.5–138.9; MGUH 21842.
- Fig. 4. Nelchinopsis kostromiensis × 500, section 10; GGU 342092-4, 21.9–114.8; MGUH 21843.
- Fig. 5. Nelchinopsis kostromiensis × 500, section 21; GGU 342320-7, 22.2-141.0; MGUH 21844.
- Fig. 6. Muderongia aff. M. simplex microperforata × 500, section 21; GGU 342231–7, 14.2–135.7; MGUH 21845.
- Fig. 7. *Muderongia staurota* × 500, section 9; GGU 342071–4, 20.3–143.6; MGUH 21846.
- Fig. 8. Muderongia tetracantha × 500, section 21; GGU 342230–8, 13.0–128.7; MGUH 21847.
- Fig. 9. Muderongia cf. M. tomaszowensis × 500, section 9; GGU 342071–4, 9.1–132.0; MGUH 21848.
- Fig. 10. Muderongia cf. M. tomaszowensis × 500, section 9; GGU 342071–4, 7.2– 130.0; MGUH 21849.
- Fig. 11. Nyktericysta? vitrea × 500, section 17; GGU 342169-4, 17.1-153.2; MGUH 21850.
- Fig. 12. *Nyktericysta? vitrea* × 500, section 17; GGU 342169; MGUH 21851.
- Fig. 13. Nyktericysta? vitrea × 500, section 7; GGU 342087–10, 22.6–130.4; MGUH 21852.
- Fig. 14. Nyktericysta? vitrea × 500, section 7; GGU 342087–11, 15.9–153.0; MGUH 21853.
- Fig. 15. Odontochitina ancala × 500, section 36; GGU 324092-7, 16.4–155.2; MGUH 21854.

upper Barremian, England and the North Sea (Costa & Davey, 1992), upper Ryazanian to lower Valanginian, north-west Europe, Ryazanian to upper Valanginian or lower Hauterivian in North Sea wells (Heilmann-Clausen, 1987), upper Ryazanian to lower Valanginian, Denmark (Davey, 1982b, type material), Hauterivian, southern, England (Harding, 1986) and lowermost Barremian, offshore Holland (R. J. Davey, personal communication in Harding, 1986 p. 107). The very similar species *M. cf. M. asymmetrica* Århus *et al.*, 1990 has been observed from the lower Barremian in the Barents Sea, whereas another similar species, *Muderongia* sp. Uwins & Batten, 1988, has been reported from the upper Hauterivian to lower Barremian, Libya.

Muderongia staurota Sarjeant, 1966c Plate 13, Fig. 7

Occurrence in East Greenland. Lower to upper Barremian. Sections 9, 10 and 21, where only a few specimens have been recorded.

Previous occurrences. Muderongia staurota was previously recorded from the lower Barremian, Speeton, England (Sarjeant, 1966b, type material), the upper Hauterivian to lower Aptian, England and the North Sea (Costa & Davey, 1992), the uppermost lower Hauterivian to 'middle' Barremian, north-west Germany (Prössl, 1990), upper Hauterivian to uppermost Barremian, north-west Europe (Heilmann-Clausen, 1987) and upper Hauterivian to lower Barremian, Andøya, Norway (Aarhus *et al.*, 1986). The species seems not to have been recorded from above the Barremian.

Muderongia tetracantha (Gocht, 1957) Alberti, 1961 Plate 13, Fig. 8

Occurrence in East Greenland. Lower Barremian to lowermost Aptian. Sections 1, 4, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19 and 21.

Previous occurrences. Muderongia tetracantha was previously recorded from the lower Valanginian to lower Barremian, England and the North Sea (Costa & Davey, 1992), the lower Valanginian?, lower Hauterivian to upper Barremian and upper Aptian, north-west Europe (Heilmann-Clausen, 1987). Heilmann-Clausen (1987, p. 19) mentioned that the species has only been recorded above the lower Barremian by Below (1982b) from northern Germany, and considered the species as more typical for the Hauterivian and lower Barremian.

Aarhus et al. (1986) reported the species from the

upper Hauterivian to lower Barremian, Andøya, Norway and Århus et al. (1990) reported it from the Hauterivian to lower Barremian, Barents Sea. Thusu (1978) reported a lower Valanginian to upper Aptian occurrence, Arctic Norway. Pocock (1976) and Brideaux (1977) have recorded the species from Hauterivian to lower Barremian, Arctic Canada and District of Mackenzie, Canada. Brideaux & McIntyre (1975) have recorded the species in the upper Aptian, also from the District of Mackenzie, Canada. Brideaux & Myhr (1976) similarly recorded the species from the District of Mackenzie, Canada, but only from the Barremian. Morgan (1980) recorded it from the uppermost Neocomian to top of the lower Albian in Australia. Helby et al. (1987) recorded M. teracantha from the uppermost Valanginian to lower Albian in Australia. Davey (1988) recorded the species (as M. tetracantha sensu Morgan 1980) from the upper Aptian and lower Albian in Papua New Guniea. Williams & Bujak (1985) reported the world-wide range as upper Hauterivian to lower Barremian.

Previous observations indicate that the species is rather common in the Hauterivian and lower Barremian but rare in the Aptian of Europe, whereas Aptian occurrence in Arctic Norway, Canada and Australia seems to be more common. The presumed lowermost Aptian record from East Greenland supports the suggestion that it has a longer range in the Arctic.

Muderongia cf. M. tomaszowensis Alberti, 1961

Plate 13, Figs 9-10

Comments. The few lower to upper Barremian specimens recorded from East Greenland, sections 9, 11 and 21, have slightly shorter lateral horns than the type material illustrated by Alberti. The present material has lateral horns similar to those of *M. pariata*, but the antapical horns of *M.* cf. *M. tomaszowensis* differ by not being open ended, blunt and notched.

Previous occurrences. Muderongia tomaszowensis was previously recorded from the Valanginian, Poland (Alberti, 1961, type material), Berriasian to upper Barremian (Millioud *et al.*, 1975) and Barremian, offshore eastern Canada (Bujak & Williams, 1978).

Genus Nelchinopsis Wiggins, 1972 Nelchinopsis kostromiensis (Vozzhennikova, 1967) Wiggins, 1972 Plate 13, Figs 4-5

Comments. In the present study no attempt has been made

to deal with the systematic discussion on this species (Wiggins, 1972, p. 299; Duxbury, 1977, p. 37; Stover & Williams, 1987, p. 11; Lentin & Vozzhennikova, 1990, p. 108–110; Harding, 1990b, p. 52).

Occurrence in East Greenland. The species here referred to as *N. kostromiensis* occurs in the upper Hauterivian? – lower Barremian, sections 9, 10, 18 and 21, but a few specimens were also found in the lowermost upper Barremian sample GGU 342235 from section 21.

Previous occurrences. Nelchinopsis kostromiensis was previously recorded from the lower Valanginian to upper Hauterivian, England and the North Sea (Costa & Davey, 1992), the lower Hauterivian to lower Barremian (as Gonyaulacysta kostromiensis) from north-west Europe by Heilmann-Clausen (1987) and lower Hauterivian to uppermost Hauterivian (as G. kostromiensis), north-west Germany (Prössl, 1990). Harding (1990b) observed that the species (as Alaskadinium wigginsi) ranges into the lowermost Barremian in England and Germany. This is consistent with observations of the species (as N. kostromiensis) from the Barents Sea (Århus et al., 1990) and the present records from East Greenland. The species also has been recorded from Valanginian and upper Hauterivian to lower Barremian (as Gonyaulacysta kostromiensis), offshore south Norway (Ofstad, 1983) and from upper Valanginian to lower Hauterivian, Alaska (Wiggins, 1972). The type material was described from the Valanginian in the Kostroma region, Russia by Vozzhennikova (1967).

Genus Nyktericysta Bint 1986 Nyktericysta? vitrea (Duxbury, 1983) Bint, 1986 Plate 13, Figs 11–14

Comments. The cysts from East Greenland described as *Nyktericysta*? *vitrea* have two closely adpressed wall layers, an autophragm covered by a microreticulate ectophragm (Plate 13, Fig. 12).

Discussion. Lister & Batten (1988) divided Australisphaera vitrea Duxbury, 1983 into A. vitrea and A. pseudovitrea Lister & Batten, 1988, without making any comments on Bint's (1986, p. 149) provisional assignment of the species to Nyktericysta? vitrea. Australisphaera pseudovitrea might very well be a species of Nyktericysta. and is distinguished from A. vitrea by the lack of sharply digitate projections at its lateral horns (Lister & Batten, 1988, p. 27). Lister & Batten (1988; table 1, A-B) indicated that A. vitrea and A. pseudovitrea never occur together in their material from southern England. In the present study forms similar to the two species distinguished by Lister & Batten (1988) have been recorded from the same sample (Plate 13, Figs 13–14).

In the studied material from East Greenland the two species *N*.? *vitrea* and *A. pseudovitrea* seem to be two end members of the same species and no attempt has been made to follow the division by Lister & Batten (1988).

Occurrence in East Greenland. Upper Barremian to upper Aptian. Sections 1, 6, 7, 8, 13, 15, 17, 19, 21, 32 and 33.

Previous occurrences. Nyktericysta? vitrea was previously recorded from the lower Aptian, southern England as A. vitrea (Duxbury, 1983, type material), upper Barremian as A. pseudovitrea and from the lower Aptian as A. vitrea, southern England (Lister & Batten, 1988).

Genus *Odontochitina* Deflandre, 1935; emend. Bint, 1986 *Odontochitina ancala* Bint, 1986 Plate 13, Fig. 15

Occurrence in East Greenland. Except for a few questionable specimens from the middle Albian sections 20, 23, all the recorded specimens are of late Albian age (sections 24, 25, 27, 30, 31, 35, 36, 37 and 38).

Previous occurrences. Odontochitina ancala was previously recorded from the upper Barremian to middle Albian, north-west Germany (Prössl, 1990), lower Aptian to middle Albian, Portugal (Berthou & Leereveld, 1990), middle and upper Albian in Western Interior, USA (Bint, 1986, type material) and from the same interval in Alaska (as O. cf. O. operculala) by May & Stein (1979).

Odontochitina costata Alberti, 1961; emend. Clarke & Verdier, 1967 Plate 14, Fig. 1

Occurrence in East Greenland. Middle part of the upper Albian. Sections 36, 37 and 38.

Previous occurrences. Odontochitina costata was previously recorded from the Cenomanian and Turonian, Germany (Alberti, 1961, type material), the upper Aptian to upper Turonian, north-west Germany (Prössl, 1990), middle to upper Albian, Peace River area, western Canada (Singh, 1971), upper Albian to lower Cenomanian, Saskatchewan, Canada (Davey, 1969), lower Cenomanian, Alaska (May, 1979), upper Albian to Cenomanian, offshore eastern Canada (Williams, 1975; Bujak & Williams, 1978) and upper Albian to top Campanian, worldwide (Williams & Bujak, 1985).

Odontochitina imparilis (Duxbury, 1980) Jain & Khowaja-Ateequzzaman, 1984 Plate 14, Fig. 2

Comments. Two specimens have been recorded from the lower Aptian section 33. On both specimens the cingulum is reflected by a distinct double line on the long lateral horn (Plate 14, Fig. 2).

Previous occurrence. Odontochitina imparilis was previously recorded from the 'middle' and upper Barremian, Speeton, England (Duxbury, 1980, type material).

Odontochitina cf. O. imparilis (Duxbury, 1980) Jain & Khowaja-Ateequzzaman, 1984 Plate 14, Fig. 3

Comments. Two specimens recorded from the lower Aptian part of section 7 have a very elongate endoblast exhibiting projections into the apical and antapical horns, as described by Duxbury (1980, p. 128), whereas the reflection of the cingulum on the lateral horn is absent or very weak (Plate 14, Fig. 3). These specimens could be atypical forms of *Odontochitina operculata* but are here assigned to *O.* cf. *O. imparilis.*

Odontochitina operculata (O. Wetzel, 1933a) Deflandre & Cookson, 1955 Plate 14, Figs 4–6

Comments. Apart from specimens very similar to the holotype, several specimens with a swollen basal part on the antapical horn (Plate 14, Figs 4 & 6) have been observed and treated as *O. operculata* in the present study.

Occurrence in East Greenland. Upper Barremian to upper Albian. The species is rather common from the uppermost Barremian to the uppermost middle Albian. It has been recorded in 33 of the 40 examined sections.

Previous occurrences. Odontochitina operculata was previously recorded from the lowermost to uppermost Barremian, Speeton, England (Davey, 1979b), whereas Duxbury (1980) recorded the first occurrence of the species in the lower part of the 'middle' Barremian (now upper Barremian) at Speeton, England. Costa & Davey (1992) recorded the species from the lower Barremian to upper Maastrichtian, England and the North Sea. Heilmann-Clausen (1987) recorded the species from the lower Barremian to Cenomanian, north-west Europe, whereas (Prössl, 1990) recorded it questionably in the upper Hauterivian to lower Barremian but present from the uppermost lower Barremian to upper Turonian, northwest Germany. According to Duxbury (1980) pre-Barremian records of O. operculata may be disregarded. Harding (1990b) recorded the first occurrence of the species as upper Barremian, England and Germany and mentioned that the previously reported pre-upper Barremian occurrences of the species may be misidentifications of, for example, operculae from Muderongia species. Harding's suggestion corroborates the observations from East Greenland.

Odontochitina singhii Morgan, 1980 Plate 14, Fig. 7

Occurrence in East Greenland. Lower Albian to top middle Albian. Sections 5, 20, 22, 23 and 26. Two specimens have also been recorded from the presumed lowermost upper Albian section 29.

Previous occurrences. Odontochitina singhii was previously recorded from the upper Barremian to middle Al-

- Fig. 1. Odontochitina costata × 500, section 36; GGU 324093–5, 18.3–135.7; MGUH 21855.
- Fig. 2. Odontochitina imparilis × 500, section 33; GGU 324029–5, 9.0–156.3; MGUH 21856.
- Fig. 3. Odontochitina cf. O. imparilis × 500, section 7; GGU 342087–4, 13.2–126.6; MGUH 21857.
- Fig. 4. *Odontochitina operculata* × 500, section 20; GGU 342194–4, 9.7–127.0; MGUH 21858.
- Fig. 5. Odontochitina operculata × 500, section 17; GGU 342169–4, 16.8–122.2; MGUH 21859.
- Fig. 6. Odontochitina operculata × 500, section 20; GGU 342199–4, 15.9–127.8; MGUH 21860.
- Fig. 7. Odontochitina singhii × 250, section 20; GGU 342183-4, 13.2–134.0; MGUH 21861.
- Fig. 8. Oligosphaeridium cf. O. albertense × 500, section 11; GGU 342102–8, 16.7–154.0; MGUH 21862.
- Fig. 9. Oligosphaeridium? asterigerum × 500, section 19; GGU 342214-4, 7.0–135.8; MGUH 21863.
- Fig. 10. Oligosphaeridium? asterigerum × 500, section 7; GGU 342081–5, 18.5–136.0; MGUH 21864.
- Fig. 11. Oligosphaeridium complex × 500, section 17; GGU 342169–4, 8.8–120.0; MGUH 21865.

bian, north-west Germany (Prössl, 1990), Aptian – lower Albian to middle Albian, Spitsbergen (Århus, 1991) whereas it has its first occurrence in the upper Albian, western Canada (Singh, 1983). Dixon *et al.* (1989) discuss the age of their recording of the species from the Northwest Territories, Canada and propose a late middle to late Albian age. From Australia the species has been recorded from the lower to upper Albian (Morgan, 1980, type material).

Genus Oligosphaeridium Davey & Williams, 1966b; emend. Davey, 1982b Oligosphaeridium cf. O. albertense (Pocock, 1962) Davey & Williams, 1969 Plate 14, Fig. 8

Comments. The recorded specimens are thin walled and often damaged.

Occurrence in East Greenland. Lower and upper Barremian. Sections 10, 11, 16, 18 and 19.

Previous occurrences. Oligosphaeridium albertense was previously recorded from the uppermost Hauterivian to uppermost lower Albian, north-west Germany (Prössl, 1990), upper Barremian, western Canada (Pocock, 1962, type material), Hauterivian to lower Albian, District of Mackenzie, Canada (Brideaux, 1977) and middle and upper Albian (as O. irregulare) Alaska (May & Stein, 1979). Costa & Davey (1992) recorded the last occurrence of the species in the top lower Cenomanian in England and the North Sea.

Oligosphaeridium? asterigerum (Gocht, 1959) Davey & Williams, 1969 Plate 14, Figs 9-10

Occurrence in East Greenland. Lower Barremian to lower Aptian. Sections 1, 4, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 21 and 33.

Comments. The processes on *Oligosphaeridium? asterigerum* are slender cylindrical with secate process tips in contrast to the processes on *O. complex* which are funnel shaped with aculeate process tips.

Previous occurrences. Oligosphaeridium? asterigerum was previously recorded from the lower Hauterivian, Germany (Gocht, 1959, type material), the lower Hauterivian to lowermost upper Turonian, north-west Germany (Prössl, 1990) and Valanginian to upper Barremian and from the upper Aptian in north-west Europe (Heilmann-Clausen, 1987). Oligosphaeridium complex (White, 1842) Davey & Williams, 1966b Plate 14, Fig. 11 & Plate 15, Fig. 1

Occurrence in East Greenland. Lower Barremian to upper Albian, the species has been observed in all the 40 examined sections where it is often quite common.

Previous occurrences. Oligosphaeridium complex was previously recorded from the lower Hauterivian to upper Turonian, north-west Germany (Prössl, 1990). Davey & Williams (1966b) described the neotype from the Cenomanian in England and mentioned that they, also in England, have recorded similar specimens from the Barremian and Ypresian (Tertiary).

Oligosphaeridium cf. *O. fenestratum* Duxbury, 1980 Plate 15, Fig. 2

Comments. The few specimens recorded are often fragmented.

- Fig. 1. Oligosphaeridium complex × 500, section 17; GGU 342161–4, 8.5–153.0; MGUH 21866.
- Fig. 2. Oligosphaeridium cf. O. fenestratum × 500, section 9; GGU 342069–8, 7.2–132.2; MGUH 21867.
- Fig. 3. Oligosphaeridium preforatum perforatum × 500, section 14; GGU 342132–4, 21.0–150.1; MGUH 21868.
- Fig. 4. Oligosphaeridium perforatum perforatum × 500, fragment of specimen illustrating the characteristically distal part of the processes, section 13; GGU 351585–4, 4.0–140.5; MGUH 21869.
- Fig. 5. Oligosphaeridium perforatum colum × 500, fragment illustrating the processes, section 18; GGU 342218–4, 7.8– 144.3; MGUH 21870.
- Fig. 6. Oligosphaeridium perforatum colum × 500, section 21; GGU 342238–3, 13.8–121.0; MGUH 21871.
- Fig. 7. Oligosphaeridium poculum × 500, section 17; GGU 342162–4, 14.8–153.2; MGUH 21872.
- Fig. 8. Oligosphaeridium poculum × 500, section 17; GGU 342167–4, 8.1–148.6; MGUH 21873.
- Fig. 9. Oligosphaeridium poculum × 500, section 30; GGU 324617–8, 21.2–153.1; MGUH 21874.
- Fig. 10. Oligosphaeridium prolixispinosum × 500, section 17; GGU 342169–4, 12.4–128.8; MGUH 21875.
- Fig. 11. Oligosphaeridium prolixispinosum × 500, section 17; GGU 342169; MGUH 21876.
- Fig. 12. *Oligosphaeridium* cf. *O. pulcherrimum* × 500, section 21; GGU 342238–3, 6.5–131.1; MGUH 21877.
- Fig. 13. Oligosphaeridium cf. O. pulcherrimum × 540, section 17; GGU 342164: MGUH 21878.

Occurrence in East Greenland. Barremian. Sections 6, 9, 11, 14, 16, and 18.

Previous occurrence. The type material was recorded from the Barremian in England by Duxbury (1980).

Oligosphaeridium perforatum (Gocht, 1959) Davey & Williams, 1969 subsp. colum Duxbury, 1983 Plate 15, Figs 5-6

Comments. A very few specimens of the subspecies have been recorded from the lower and upper Barremian, sections 18 and 21. The distal parts of the processes have less angularity and more fenestration than the other subspecies *O. perforatum perforatum*.

Previous occurrence. The type material was described from the upper Aptian to lower Albian in England by Duxbury (1983).

Oligosphaeridium perforatum (Gocht, 1959) Davey & Williams, 1969 subsp. perforatum Duxbury (1983) Plate 15, Figs 3-4

Occurrence in East Greenland. Lower Barremian to middle Albian. Sections 1, 6, 7, 9, 12, 13, 14, 17, 18, 20, 22 and 23.

Previous occurrences. Oligosphaeridium perforatum was previously recorded from the lower to upper Aptian, England (Duxbury, 1983), Hauterivian to Barremian, Germany (Gocht, 1959, type material), upper Hauterivian to top lower Aptian, Andøya, Norway (Aarhus *et al.*, 1986) and upper Hauterivian in a North Sea well (Heilmann-Clausen, 1987).

Oligosphaeridium poculum Jain, 1977b Plate 15, Figs 7-9

Occurrence in East Greenland. Lower Barremian to middle part of upper Albian. Sections 5, 7, 8, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 30, 31, 32, 34 and 36. The species always occurs in low numbers.

Previous occurrences. Oligosphaeridium poculum was previously recorded from the lower Hauterivian to lowermost upper Albian, north-west Germany (Prössl, 1990). The German distribution, like the present observations documents that the species has a rather long range. It has also been reported from the uppermost Barremian to upper Aptian, south-east England by Lister & Batten (1988). The species was described from the lower Albian in India by Jain (1977) who mentioned (1977, p. 181) that *Polystephanephorus* sp. cf. *P. urnaformis* (Cookson, 1953), described from the Albian of western Canada by Singh (1971) and Pocook (1976), appears to be synonymous with *O. poculum*.

Oligosphaeridium prolixispinosum Davey & Williams, 1966b Plate 15, Figs 10–11

Occurrence in East Greenland. Barremian to middle Albian. Sections 7, 17, 19, 20, 21 and 22.

Previous occurrences. Oligosphaeridium prolixispinosum was previously recorded from the Cenomanian, England (Davey & Williams, 1966b, type material), the upper part of the lower Albian to the lowermost part of the middle Albian, north-west Germany (Prössl, 1990), upper Barremian from north-west Europe, Heilmann-Clausen (1987) and upper Barremian to top Coniacian, worldwide (Williams & Bujak, 1985).

Oligosphaeridium cf. *O. pulcherrimum* (Deflandre & Cookson, 1955) Davey & Williams, 1966b Plate 15, Figs 12–13

Comments. The specimens here referred to O. cf. O. pulcherrimum differ slightly from the type material described by Deflandre & Cookson (1955) by the shape of the processes. The processes of O. pulcherrimum gradually widen into deep strongly perforated almost reticulate funnels from about half their length, the rims of the funnels are fringed with numerous spines. The processes on the O. cf. O. pulcerrimum gradually widen into perforated almost reticulate funnels from about two thirds of their length and have fewer spines distally. The processes of O. cf. O. pulcherrimum are morphological close to the processes of Stiphrosphaeridium anthophorum but the processes of S. anthophorum widen into reticulate funnels almost from their base, have more extensive reticulation and fewer or no spines on the continuous smooth distal edges.

Occurrence in East Greenland. Lower Barremian to upper Albian. The species has been recorded from 32 of the 40 examined sections.

Previous occurrences. Oligosphaeridium pulcherrimum was previously recorded from the upper Hauterivian and

90

the Barremian, Speeton, England (Duxbury, 1977; 1980), the Lower Cretaceous, Australia (Eisenack & Cookson, 1955, type material) and upper Hauterivian to upper Turonian, north-west Germany (Prössl, 1990). The species range according to Davey & Verdier (1974) from pre-Barremian to post-Cenomanian in Europe.

Oligosphaeridium cf. *O. totum* Brideaux, 1971 Plate 16, Fig. 1

Occurrence in East Greenland. Uppermost lower Aptian to upper Albian. Sections 12, 13, 20, 21, 22, 23, 24, 25, 26, 28, 29, 31, 35, 36 and 37.

Previous occurrences. Oligosphaeridium totum was previously recorded from the Aptian, Arctic Norway (Thusu, 1978) lower? Albian, Peary Land, North Greenland and upper Aptian to lower Albian, Barents Sea (Århus, 1991), middle and upper Albian, western Canada (Singh, 1971; Brideaux, 1971, type material), Aptian to upper Albian, District of Mackenzie, Canada (Brideaux & McIntyre, 1975), Hauterivian to lower Albian, District of Mackenzie, Canada (Brideaux, 1977), Hauterivian to top Barremian, District of Mackenzie, Canada (Brideaux & Myhr, 1976), upper Aptian to lowermost middle Albian, Edmonton Embayment, western Canada (Banerjce & Davies, 1988) and lower Albian to above the lower Cenomanian, offshore eastern Canada (Williams, 1975; Bujak & Williams, 1978).

Oligosphaeridium sp. 1 Plate 16, Fig. 2

Description. The specimens here described as Oligosphaeridium sp. 1 have some similarities with Oligosphaeridium albertense (Pocock, 1962) Davey & Williams, 1969, but the processes differ by being slightly larger (up to 52 μ), less trumpet-shaped and almost cylindrical, except for a distal expansion, slightly fenestrate with an aculate to secate margin. The fenestration is much less pronounced than on O. fenestratum and O. pulcherrimum.

Occurrence in East Greenland. Upper Aptian to upper Albian. Sections 5, 12, 13, 20, 23, 26, 29 and 30. The species is abundant to dominant in a rather narrow interval in the middle Albian. Sections 5, 20 and 23.

Previous occurrence. Oligosphaeridium sp. 1 was previously recorded from the middle Albian, Spitsbergen as Oligosphaeridium sp. sensu Nøhr-Hansen (Århus, 1991). Genus Ovoidinium Davey 1970; emend. Duxbury, 1983 Ovoidinium cinctum (Cookson & Eisenack, 1958) Davey, 1970 Plate 16, Figs 3-4

Comments. The few recorded specimens from the lower Aptian part of section 17 have the typical shape, an apical horn with a small central projection, and a granular epicyst as originally described by Cookson & Eisenack, 1958.

Previous occurrences. Ovoidinium cinctum was previously recorded from the upper Neocomian to lower Aptian, Papua New Guinea (Cookson & Eisenack, 1958, type material) and uppermost lower Aptian to upper Aptian (as *Ascodinium cinctum*) from southern England (Lister & Batten, 1988).

Ovoidinium? sp. 1 Plate 24, Figs 5-14

Description. Ovoidinium? sp 1 is represented by two morphological very similar forms that always occur together. The first morphotype has an ovoidal outline and the wall is probably composed of two closely appressed layers (Plate 24, Figs 5, 6, 11, 12?, 14). The second morphotype is hypocavate. The pericyst is ovoidal to slightly pentagonal in outline whereas the endocyst is smaller and almost circular (Plate 24, Figs 7, 8, 9, 10, 13).

Both forms are dorsoventral compressed. Both endophragm and ectophragm are smooth without any ornamentation. The archeopyle is type ?tAtl and the operculum is free or adherent. Tabulation pattern is only observed at the archeopyle margin; cingulum and sulcus are not indicated. The length of five complete specimens ranges from 50 to 65 μ and the width ranges from 45 to 55 μ .

Remarks. The species is placed in the genus *Ovoidinium* with a question mark due to the absence of cingulum and sulcus, which are usually present on *Ovoidinium* species.

Occurrence in East Greenland. Uppermost Albian where it is quite common. Sections 24, 25, 27, 30, 39 and 40. The species seems to be a good stratigraphical marker.

Previous occurrence. The species was previously observed from the upper Albian to lowermost Cenomanian, Troms and Hammerfest basins, offshore north-west Norway (L. I. Costa, personal communication 1989). Ovoidinium sp. 2 Plate 16, Figs 5-8

Description. The few observed specimens are bicavate with a smooth, thin-walled pericyst of pentagonal outline and a smooth, thin-walled spherical endocyst, a short apical horn and two reduced antapical horns. A combination archeopyle (type tAtl) is indicated by fractures on the observed specimens. The cingulum is indicated by a flange. A small dark circular spot is present inside the epicyst on the observed specimens.

Remarks. Ovoidinium sp. 2 differs from *O*. sp. 3 by having a cingular flange, a circular spot inside the epicyst and by its smooth periphragm and endophragm.

Occurrence in East Greenland. Uppermost Albian. Sections 30 and 40.

Ovoidinium sp. 3 Plate 16, Figs 9–11

Description. The few observed specimens have a thinwalled periphragm and a shagreenate to granulate spherical inner-body. The cyst is bicavate with a broad based, gently narrowing apical projection, an even broader based antapical projection with almost parallel sides, and an almost right-angled to slightly rounded posterior closure. The cingulum is indicated by folds or ridges on the periphragm. No tabulation has been observed.

The combination archeopyle (type tAtI) is indicated by a fracture on three specimens, whereas the operculum is detached on a fourth and slightly larger specimen (width 51 μ ; Plate 16, Fig. 11). This larger specimen differs slightly in the shape of the endophragm which has an antapical bulge extending into the antapical projection.

Dimensions. Complete specimens (3) length 62 (67) 71 μ , width 35 (40) 43 μ , apical projection 14 (16) 20 μ , antapical projection 14 (16) 20 μ .

Remarks. Ovoidinium sp. 3 resembles *O. incorporeum* Duxbury, 1983, but differs by its size and shape of the apical and antapical projections. The specimens differ from *O. verrucosum* (Cookson & Hughes 1964) Davey, 1970 by having a relatively large apical projection and grana instead of verrucae on the endophragm.

Occurrence in East Greenland. Middle Albian. Sections 21 and 22.

Ovoidinium sp. 4 Plate 16, Figs 12–13

Description. The few specimens observed from the upper Barremian, section 17, are cavate with a thin walled periphragm and a shagreenate to scabrate, spherical endophragm. The apical horn has a small projection leaving a very narrow anterior cavation. The posterior cavation is larger and the antapical projection is asymmetrical with a prominent pointed left horn. The cingulum is developed by folds on the periphragm. The combination archeopyle (type tAtI) is indicated by fractures in the endophragm, the operculum being attached on one of the two observed specimens (Plate 16, Fig. 13). Tabulation is only indicated by fractures between the dorsal precingular plates on the endophragm.

Dimensions. Dimension of the complete specimen. Length 59 μ , width 42 μ . Specimen without operculum, length 36 μ .

Remarks. The specimens differ from *O. scabrosum* (Cookson & Hughes, 1964) Davey, 1970 by its smaller anterior cavation and by its pronounced fracturing between the precingular plates. The specimens are almost comparable to *O. verrucosum* (Cookson & Hughes, 1964) Davey, 1970 in size and shape, but the ornamentation on the endophragm is less distinctive than the verrucae on *O. verrusosum*.

Genus Palaeohystrichophora Deflandre, 1935 Palaeohystrichophora infusorioides Deflandre, 1935 Plate 16, Fig. 14

Occurrence in East Greenland. Upper Albian. Sections 24, 25, 28, 30, 31, 37, 39 and 40.

Previous occurrences. Palaeohystrichophora infusorioides was previously recorded from the Vraconian (uppermost Albian) to Cenomanian, France (Davey & Verdier, 1973), middle Cenomanian, Peace River area, western Canada (Singh, 1983), Cenomanian, Saskatchewan, Canada (Davey, 1970; samples 890, 835, 805), but according to Singh (1983, table 7) sample 890 is of late Albian age, lower Cenomanian, Western Interior, USA (Nichols & Jacobsen, 1982), middle? – upper Albian and upward, offshore eastern Canada (Williams, 1975; Bujak & Williams, 1978), upper Albian to top Campanian, world-wide (Williams & Bujak, 1985) and Albian and younger, Australia (Cookson & Eisenack, 1960a; Ingram, 1968; Morgan, 1980). Other reported first occurrences of the species are of younger age (for full references see Singh, 1983, p. 158–159). The species appears in the upper Albian in Australia, north-west Europe and East Greenland and has also been reported from the upper Albian, offshore eastern Canada and Saskatchewan, Canada. The species first occurs in the Cenomanian or younger strata in the Western Interior, western Canada and Arctic Canada.

Genus Palaeoperidinium Deflandre, 1935; emend. Sarjeant, 1967b Palaeoperidinium cretaceum Pocock, 1962, emend. Davey, 1970 Plate 16, Fig. 15

Occurrence in East Greenland. Upper Barremian to upper Albian. The species is quite common in the upper Aptian to mid upper Albian. It was recorded in 34 of the 40 examined sections.

Previous occurrences. Palaeoperidinium cretaceum has never been reported from sediments older than late Barremian (including the 'middle' Barremian in England, Davey, 1979b; Duxbury, 1980; Harding, 1990b). Thusu (1978) reported the species from unspecified Barremian strata, Arctic Norway, and Arhus et al. (1990) recorded the species from the lower Barremian of the Barents Sea. Prössl (1990) reported it from the uppermost lower Barremian to upper Turonian, north-west Germany. Brideaux (1977) recorded the species from the Hauterivian to middle Albian, District of Mackenzie, Canada and Williams & Bujak (1985) recorded it from the upper Barremian to the mid middle Albian, world-wide. Harding (1990a, b) concluded, from his observations of the species in the upper Barremian that the species was restricted to nearshore environments and also mentioned (1990b, p. 52) that the species may be used as a palaeoenvironmental indicator but that it does not satisfy the requirements of a zonal index species.

Palaeoperidinium? sp. 1 Plate 16, Figs 16–17

Description. A relatively small cyst (length 46 μ , width 37 μ), spherical to slightly pentagonal in outline, a small apical and left antapical horn, whereas the right antapical horn is absent or reduced to a bulge. The broad cingulum divides the cyst into a slightly longer epicyst than hypocyst. The surface is scabrate to granulate, no archeopyle has been observed.

Remarks. Palaeoperidinium? sp. 1 is smaller and has less pronounced antapical horns than *P. cretaceum*.

Occurrence in East Greenland. Upper Albian. Sections 24, 25, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39 and 40. The first occurrence of the species seems to be a good marker for the base of the upper Albian.

Genus *Pareodinia* Deflandre 1947; emend. Stover & Evitt, 1978 *Pareodinia* spp. Plate 11, Fig. 1, Plate 17, Figs 1–5

Comments. In the present study no attempt has been made to identify species of the genus.

Occurrence in East Greenland. Barremian to upper Albian. Sections 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 30, 32 and 36.

Genus *Phoberocysta* Millioud, 1969; emend. Helby, 1987 *Phoberocysta neocomica* (Gocht, 1957) Millioud, 1969; emend. Helby, 1987 subsp. *neocomica* Lentin & Williams (1973) Plate 17, Figs 6-8

Occurrence in East Greenland. Barremian. Sections 8, 9, 11, 15, 16, 18, 19 and 21.

Previous occurrences. Phoberocysta neocomica neocomica was previously recorded from the Hauterivian, Germany (Gocht, 1957, type material), the upper Ryazanian to lower Aptian, England and the North Sea (Costa & Davey, 1992), the upper Ryazanian to lowermost Aptian, north-west Europe (Heilmann-Clausen, 1987) and upper Berriasian to lowermost Aptian, world-wide (Williams & Bujak, 1985).

Genus Prolixosphaeridium Davey et al., 1966; emend. Davey, 1969a Prolixosphaeridium parvispinum (Deflandre, 1937b) Davey et al., 1966 Plate 17, Fig. 9

Occurrence in East Greenland. Barremian and middle Albian. Sections 7, 10, 17 and 20.

Previous occurrences. Prolixosphaeridium parvispinum was previously recorded from the 'middle' Barremian to upper Albian, north-west Europe (Heilmann-Clausen, 1987) and the uppermost 'middle' Barremian to lowermost upper Albian, north-west Germany (Prössl, 1990).

Genus Protoellipsodinium Davey & Verdier, 1971 Protoellipsodinium clavulum Davey & Verdier, 1974; emend. Duxbury, 1983 Plate 17, Figs 10-11

Comments. Only three specimens have been recorded from the lower Aptian, section 17. One of the specimens (Plate 17, Fig. 10) has capitate to slightly bifurcate process tips, as mentioned by Davey & Verdier (1974), whereas another (Plate 17, Fig. 11) has bi- to multifurcate process tips as described by Duxbury (1983) in his emendation of the species.

Previous occurrences. Protoellipsodinium clavulum was previously recorded from the Aptian, France (Davey & Verdier, 1974, type material), lower Aptian to lower Albian, southern England (Duxbury, 1983), Aptian or lower Albian in a North Sea well (Heilmann-Clausen, 1987), lower Barremian to lower Albian, north-west Germany (Prössl, 1990) and (as Operculodinium? spinigerum) from Hauterivian? to Barremian, District of Mackenzie, Canada (Brideaux, 1977).

Protoellipsodinium spinocristatum Davey & Verdier, 1971 Plate 17, Figs 12–13

Occurrence in East Greenland. The species is very rare and has only been recorded from the middle Albian. Sections 20 and 23.

Previous occurrences. Protoellipsodinium spinocristatum was previously recorded from the Aptian, south-east France (Davey & Verdier, 1974), Albian, south-east France (Davey & Verdier, 1971, type material), Aptian, south-east England (Duxbury, 1983; Lister & Batten, 1988), lower Aptian to upper Albian, England and the North Sea (Costa & Davey, 1992) and upper Aptian to mid upper Albian, north-west Germany (Prössl, 1990).

Genus *Pseudoceratium* Gocht, 1957; emend. Bint, 1986

Comments. The genus Pseudoceratium is well represented in the present study and some of the species are quite abundant. Several specimens of the most abundant species have been measured in order to best define the species. The method of measurement has partly been adapted from Helby (1987, plate 18) and is illustrated on Fig. 12.

Pseudoceratium anaphrissum (Sarjeant, 1966b) Bint, 1986 Plate 17, Figs 14–16; Plate 18, Figs 1–3

Comments. The frequent specimens observed in the present material are similar to the holotype but slightly larger, differing especially in the length of the spines. The specimens from East Greenland are, on the other hand, almost identical to the one illustrated by Thusu (1978, plate 2, fig. 3) from Arctic Norway.

Dimensions. (Measurements in μ .)

- Fig. 1. Oligosphaeridium cf. O. totum × 500, section 12; GGU 324651-4, 5.4-150.4; MGUH 21879.
- Fig. 2. *Oligosphaeridium* sp. 1 × 500, section 5; GGU 351565–4, 3.2–125.6; MGUH 21880.
- Fig. 3. Ovoidinium cinctum × 500, section 17; GGU 342170-4, 20.1–126.1; MGUH 21881.
- Fig. 4. Ovoidinium cinctum × 500, section 17; GGU 342170-4, 20.0-144.6; MGUH 21882.
- Fig. 5. Ovoidinium sp. 2 × 700, section 30; GGU 324615–3, 10.9–137.2; MGUH 21883.
- Fig. 6. Ovoidinium sp. 2 × 500, section 30; GGU 324617–8, 16.1–125.0; MGUH 21884.
- Figs 7 & 8. *Ovoidinium* sp. 2 × 500, section 30; GGU 324615–7, 21.7–154.0; MGUH 21885.
- Fig. 9. Ovoidinium sp. 3 × 500, section 21; GGU 342240-4, 22.0-145.7; MGUH 21886.
- Fig. 10. *Ovoidinium* sp. 3 × 500, section 22; GGU 346588–4, 7.3–132.0; MGUH 21887.
- Fig. 11. Ovoidinium sp. 3 × 500, section 22; GGU 346588–4, 17.8–122.0; MGUH 21888.
- Fig. 12. *Ovoidinium* sp. 4 × 500, section 17; GGU 342169-4, 17.2–143.2; MGUH 21889.
- Fig. 13. Ovoidinium sp. 4 × 500, section 17; GGU 342169-4, 4.5-124.9; MGUH 21890.
- Fig. 14. *Palaeohystrichophora infusorioides* × 500, section 30, GGU 324613–8, 12.0–150.9; MGUH 21891.
- Fig. 15. Palaeoperidinium cretaceum × 500, section 31; GGU 324623–4, 20.8–134.8; MGUH 21892.
- Fig. 16. *Palaeoperidinium*? sp. 1 × 500, section 37; GGU 324648–4, 11.2–140.4; MGUH 21893.
- Fig. 17. *Palaeoperidinium*? sp. 1 × 500, section 37; GGU 324648–4, 3.1–146.7; MGUH 21894.

				2	Specimens	
		A:	60	(71)	82	10
A_1	=	A incl. spines:	65	(79)	102	10
		B;	71	(89)	105	10
\mathbf{B}_1	$^{\circ}$ =	B incl. spines:	82	(106)	122	10
		C:	97	(106)	122	4
C ₁	=	C incl. spines:	108	(120)	136	4
S	=	max. spine length:	9	(13)	23	10

Holotype. (Sarjeant, 1966b, plate 22, fig. 8).

B = 102 μ B₁ = 118 μ C₁ = 105 μ D = 7 μ .

Occurrence in East Greenland. Lower Barremian, sections 4, 9, 10, 11, 18 and 21. The species is very abundant (up to 35%) in a narrow interval in the middle part of its range. A few questionable specimens are recorded from the lowermost upper Barremian in section 16.

Previous occurrences. Pseudoceratium anaphrissum was previously recorded from the lower Barremian at Speeton, England (Sarjeant, 1966b, type material; Duxbury, 1980 Harding, 1990b). Davey (1974; 1979b) recorded the species from the lower Barremian LB1 Beds and from the 'middle' Barremian established for the Middle B Beds or Cement Beds at Speeton, England. Costa & Davey (1992) recorded the species from the lower Barremian to the lowermost upper Barremian, England and the North Sea.

Harding (1990b, text fig. 3, following Rawson & Mutterlose (1983) and Mutterlose (1983, 1984)) divided the Speeton section into lower and upper Barremian, based on belemnite zonation and lithostratigraphic correlation with Germany, and placed the lower-upper Barremian boundary at the base of the Middle B Beds (Cement Beds). According to this new division of the Speeton section, P. anaphrissum was recorded from the lower Barremian at Speeton by Sarjeant (1966b), Duxbury (1980) and Harding (1990b) whereas Duxbury (1980) and Harding (1990b) questioned Davey's (1974; 1979b) record of the species from the Middle B Beds (now upper Barremian) of Speeton, England. Besides the lower Barremian records from the Speeton section, Harding (1990b) also recorded the species from other lower Barremian sediments in south-eastern England and northern Germany. Heilmann-Clausen (1987, fig. 4) has used Davey's (1974; 1979b) 'middle' Barremian range for the species in his record of selected dinoflagellate cysts from north-west Europe. Prössl (1990) recorded the species (as Aptea anaphrissa) from the lower Barremian, north-west Germany.

Thusu (1978) reported the species from the Barremian, Arctic Norway. Aarhus *et al.* (1986) recorded the species (as *Aptea anaphrissa*) from the upper Hauterivian to lower Barremian, Andøya, Norway, Århus *et al.* (1990) recorded the species from the lower Barremian, Barents Sea, Costa (1981) recorded the species (as *Aptea ana-phrissum*) from the Barremian, offshore south Norway.

According to Harding (1990b, p. 51), the illustrated Canadian records of the species (Williams, 1975; Pocock, 1976) are not of conspecific specimens. The previous records from north-west Europe indicate that the species is probably restricted to the lower Barremian.

Pseudoceratium eisenackii (Davey, 1969a) Bint, 1986

Plate 18, Figs 4-9

Comments. The specimens assigned to *Pseudoceratium eisenackii* in the present material are subtriangular to pentagonal in shape, with a well developed apical horn. A weak lateral projection is present in a postcingular position. Two antapical projections may exist, one often only

- Fig. 1. Pareodinia sp. × 500, section 10; GGU 342092–7, 4.3–155.4; MGUH 21895.
- Fig. 2. *Pareodinia* sp. × 500, section 10; GGU 342092–7, 13.2–140.1; MGUH 21896.
- Fig. 3. Pareodinia sp. × 500, section 14; GGU 342134-4, 10.0–137.2; MGUH 21897.
- Fig. 4. Pareodinia sp. × 500, section 21; GGU 342237–4, 4.1–132.4; MGUH 21898.
- Fig. 5. Pareodinia sp. × 500, section 19; GGU 342214–4, 10.4–127.2; MGUH 21899.
- Fig. 6. Phoberocysta neocomica neocomica × 500, section 11; GGU 342104–7, 3.3–153.7; MGUH 21900.
- Fig. 7. Phoberocysta neocomica neocomica × 500, section 21; GGU 342320–4, 7.7–126.0; MGUH 21901.
- Fig. 8. Phoberocysta neocomica neocomica × 500, section 9; GGU 342071–8, 17.2–144.0; MGUH 21902.
- Fig. 9. *Prolixosphaeridium parvispinum* × 500, section 17; GGU 342169–4, 21.2–146.7; MGUH 21903.
- Fig. 10. Protoellipsodinium clavulum × 750, specimen with capitate to bifurcate process termination, section 17; GGU 342167–4, 19.0–144.0; MGUH 21904.
- Fig. 11. Protoellipsodinium clavulum × 750, specimen with bito multifurcate process termination and operculum inside the cyst, section 17; GGU 342167–4, 11.4–121.4; MGUH 21905.
- Figs 12 & 13. *Protoellipsodinium spinocristatum* × 500, section 23, GGU 351670-4, 12.4-124.9; MGUH 21906.
- Fig. 14. Pseudoceratium anaphrissum × 500, section 16, GGU 351512–4, 16.0–140.2; MGUH 21907.
- Fig. 15. Pseudoceratium anaphrissum × 500, section 16; GGU 351512–4, 10.3–127.9; MGUH 21908.
- Fig. 16. *Pseudoceratium anaphrissum* × 500, section 10; GGU 342094–4, 7.0–147.0; MGUH 21909.

Fig. 12. Key used for measurements of *Pseudoceratium* species (partly after Helby, 1987, fig. 18).

represented by a weak bulge or is practically absent, the other being always a bulge which usually forms a prominent horn.

The ornamentation is a network of low crests and short spines covering most of the surface. A circular area on the ventral and/or dorsal side may be devoid of ornamentation. The ornamentation on one specimen (Plate 18, Fig. 7), examined by SEM, illustrates that the network ornamentation is intratabular on the pre- and postcingular plates and that the cingular area is distinguished by one partly broken crest.

Dimensions. (Measurements in μ .)

		Range	8	Specimens	
Total length:	100	(120)	139	2	
Cyst length without operculum:	57	(73)	88	19	
Cyst width:	65	(80)	94	19	
Height of crests:	1	(4)	9	18	

Remarks. The specimens from East Greenland are slightly larger and, occasionally, have larger projections than the type material described from Saskatchewan, Canada by Davey (1969), although the ornamentation pattern and height of the crests resemble Davey's (1969) material.

The species has been distinguished from *Pseudocer*atium polymorphum (Eisenack, 1958; emend. Dörhöfer & Davies, 1980) Bint, 1986 by its smaller overall size and by its lower crests. *Pseudoceratium eisenackii* differs from *P. retusum* Brideaux, 1977 by its smaller lateral and antapical horns, and by its ornamentation. *Pseudoceratium securigerum* (Davey & Verdier, 1974) Bint, 1986 is very similar to the present material of *P. eisenackii* in size and shape but differs by its ornamentation which is composed of discrete processes that seldom make up crests.

Occurrence in East Greenland. Uppermost Barremian to the mid upper Albian. Sections 13, 14, 17, 20, 22, 23, 26, 29, 32, 33, 35 and 36.

Previous occurrences. Pseudoceratium eisenackii was previously recorded from the upper Aptian to uppermost Albian (as Aptea eisenackii), north-west Germany (Prössl, 1990), upper Albian, Saskatshewan, Canada (Davey, 1969, type material), middle to upper Albian (as Cyclonephelium eisenackii), Alaska (May & Stein, 1979), upper Albian, Western Interior, USA (Bint, 1986), lower to upper Aptian, Libya (Uwins & Batten, 1988) and Albian and Cenomanian (Millioud et al., 1975).

- Fig. 1. Pseudoceratium anaphrissum × 500, section 16; GGU 351512–4, 19.3–123.5; MGUH 21910.
- Fig. 2. *Pseudoceratium anaphrissum* × 530, operculum, section 16; GGU 351512; MGUH 21911.
- Fig. 3. Pseudoceratium anaphrissum × 530, section 16; GGU 351512; MGUH 21912.
- Fig. 4. *Pseudoceratium eisenackii* × 500, section 17; GGU 342169–4, 9.2–151.6; MGUH 21913.
- Fig. 5. *Pseudoceratium eisenackii* × 500, section 17; GGU 342169–4, 14.0–128.3; MGUH 21914.
- Fig. 6. *Pseudoceratium eisenackii* × 500, section 17; GGU 342169–4, 15.2–140.2; MGUH 21915.
- Fig. 7. *Pseudoceratium eisenackii* × 500, section 17; GGU 342169; MGUH 21916.
- Fig. 8. Pseudoceratium eisenackii × 500, section 20; GGU 342196–4, 10.5–134.0; MGUH 21917.
- Fig. 9. Pseudoceratium eisenackii × 500, section 20; GGU 342174–7, 13.1–134.4,; MGUH 21918.
- Fig. 10. *Pseudoceratium expolitum* × 500, section 20; GGU 342194-4, 9.8–125.3; MGUH 21919.
- Fig. 11. *Pseudoceratium* aff. *P. expolitum* × 500, section 37; GGU 324651–4, 6.4–128.7; MGUH 21920.
- Fig. 12. Pseudoceratium aff. P. expolitum × 500, section 24; GGU 346456-4, 19.5-117.8; MGUH 21921.
- Fig. 13. *Pseudoceratium expolitum* × 500, section 20; GGU 342201–4, 4.9–145.8; MGUH 21922.
- Fig. 14. *Pseudoceratium* cf. *P. interiorense* × 500, section 22; GGU 346584–4, 4.8–127.6; MGUH 21923.

100

Pseudoceratium expolitum Brideaux, 1971 Plate 18, Figs 10, 13

Comments. The material from East Greenland is very similar to the type material described and illustrated by Brideaux (1971).

Dimensions. (Measurements in μ .)

		Range	Specimens	
Total length:	117	(125)	133	2
Length without operculum:	57	(73)	88	14
Width:	60	(79)	91	14

Occurrence in East Greenland. Base of middle Albian to lowermost part of the upper Albian. Sections 5, 20, 22, 23, 26, 29 and 31.

Previous occurrences. Pseudoceratium expolitum was previously recorded from the Aptian to lower Albian, Spitsbergen (Århus, 1991), middle to upper Albian, Alberta, Canada (Brideaux, 1971, type material and Singh, 1971, as Pseudoceratium regium), lower Hauterivian to upper Albian (as P. regium), Arctic Canada (Pocock, 1976), base middle to mid upper Albian, Arctic Canada (Doerenkamp et al., 1976), upper Barremian to lower Albian, Edmonton Embayment, western Canada (Banerjce & Davies, 1988), middle and upper Albian, Alaska (May & Stein, 1979; May 1979) and middle Albian to upper Cenomanian (Millioud et al., 1975), lower Barremian to upper Aptian (as P. regium) and lower to mid middle Albian (as P. expolitum), offshore eastern Canada (Bujak & Williams, 1978). Only one specimen has been recorded from Europe where Davey (1982a) reported the species (as P. regium) from the upper Aptian, north-west Germany.

Remarks. The present observation seems to be the first outside North America, except for Davey's (1982a) and Århus' (1991) few recorded specimens. The middle Albian first occurrence is consistent with the recordings by Brideaux (1971), Singh (1971), Doerenkamp *et al.* (1976), May & Stein (1979) and May (1979) from Alberta, Arctic Canada and Alaska.

Pseudoceratium aff. P. expolitum Brideaux, 1971

Plate 18, Figs 11-12

Comments. These specimens differ from *P. expolitum* by being smaller and by having broad based bulges, or broad-based short projections, apically, laterally and an-

tapically, instead of well developed horns as described and illustrated by Brideaux (1971).

Dimensions.	(Measurements	in μ.)	
		Range	Specimens

	100		72:
63	(73)	85	4
42	(48)	59	12
63	(73)	85	12
	63 42 63	63 (73) 42 (48) 63 (73)	63 (73) 85 42 (48) 59 63 (73) 85

Occurrence in East Greenland. Middle upper Albian. Sections 24, 25, 28, 30, 31, 35, 36, 37 and 40. The species seems to be a reasonably good marker for the middle upper Albian. *Pseudoceratium* aff. *P. expolitum* always occurs in younger sediments than *P. expolitum*.

Pseudoceratium cf. P. interiorense Bint, 1986

Plate 18, Fig. 14

Description. The specimen is hyaline and very thin walled. The position of the right lateral horn close to the antapical horn and the reticulation, are very similar to *P. interiorense.*

Occurrence in East Greenland. Only one specimen has been recorded from the middle Albian in East Greenland. Section 22.

Previous occurrence. The type material was described from the lower upper Albian, Western Interior, USA (Bint, 1986).

Pseudoceratium iveri sp. nov. Plate 19, Figs 1–8; Text Figs 13–15

Origin of name. After Iver Iversen who fatefully followed the explorer Ejnar Mikkelsen on his East Greenland expedition.

Diagnosis. The species is a large, dorso-ventrally compressed ceratioid cyst, with long, pointed apical, right lateral and left antapical horns. The species has two wall layers. The ectophragm consists of a complicated network, supported by processes. The network extends the horn terminations and is concentrated on the plates, leaving the pandasutural areas free of ornamentation. Tabulation is ceratioid. Cingulum is characterised by a narrow broken flange and sulcal plates have low ornamentation. The archeopyle is apical (type $t\overline{A}$).

Fig. 13. *Pseudoceratium iveri* sp. nov., the holotype, also shown in Plate 19, Fig. 1, from section 17; GGU 342166–5, 16.7–146.0. External dorsal view illustrating the tabulation and the archeopyle sutures.

Description

Cyst type. Proximate, ceratioid.

Shape. Dorso-ventrally compressed cyst with three moderately long horns, an apical, a right lateral (cingular/ post-cingular) and an antapical horn. The three horns are situated with approximately 120° spacing.

Wall relationship. The cyst-wall is two-layered and composed of autophragm and ectophragm.

Wall features. The autophragm has a shagreenate to microperforate outer surface in the pandasuture areas (Plate 19, Fig. 4) whereas the plates are covered with processes. The processes supports the ectophragm which consist of an irregular intratabular network. The ectophragm extends the horn terminations up to 15 μ . Ectophragm and autophragm are close in the sulcal area and on plate 6' (Plate 19, Fig. 5) whereas elsewhere the ectophragm is elevated up to 7 μ by processes and pillars on the plates (Plate 19, Figs 3–5).

Tabulation. The tabulation is difficult to observe in transmitted light. In SEM the tabulation is seen to be ceratioid 4', 6", ?6c, 6"', 1p, 1"" with probably 5 small sulcal plates (as, ras, rs, ls and ps). The tabulation is expressed by the pandasutures which are devoid of the reticulate ectophragm. The antapical plate 1"" is rather large, sexiform, and together with plate 1p, composes the antapical horn. The small plate 1"' is situated above plate 1p, and extends slightly into the sulcal area. Cingulum appears to be

Fig. 14. *Pseudoceratium iveri* sp. nov., same specimen as Plate 19, Fig. 3, from section 21; GGU 342239. External ventral view illustrating the tabulation, including five weakly developed ventral plates.

composed of a broken flange. The plate 6" is large and a distinct sulcal notch is formed between 6" and 1". The length-axis of the sulcal area is twisted from the right side of the hypocyst to the left side of the epicyst. Five sulcal plates of very low relief have been distinguished (Plate 19, Figs 3 & 5, text Figs 14 & 15).

Archeopyle. Apical (type tA).

Holotype. Plate 19, Fig. 1 Text Fig. 11, MGUH 21924 from GGU 342166–5, 16.7–146.O.

Fig. 15. *Pseudoceratium iveri* sp. nov., same specimen as Plate 19, Fig. 5, from section 21; GGU 342239. External ventral view illustrating paratabulation, including five weakly developed ventral plates and the archeopyle sutures.

101

Type locality. Section 17, Aucella Bjerg, Wollaston Forland, East Greenland (Fig. 2).

Dimensions. (Measurements in μ .) See Fig. 12 for definitions of A-F.

	Holotype		Range	Specimens	
A	106	74	(100)	116	9
В	85	71	(81)	94	9
С	170	142	(176)	216	9
D	42	28	(43)	57	9
E		65	(74)	85	5
F	43	31	(37)	51	9

Discussion. Pseudoceratium plerum (Duxbury, 1983) Bint, 1986 from the lower Aptian (Duxbury, 1983) and lower and upper Aptian (Lister & Batten, 1988) in southern England, differs from *P. iveri* sp. nov. by being smaller, having shorter, distally rounded horns and by a less complex ectophragm. *Pseudoceratium iveri* and *P. plerum* have approximately the same tabulation formula although they are interpreted slightly differently (Duxbury, 1983, text fig. 5; present study, text Figs 13–15.

Pseudoceratium polymorphum differs from *P. iveri* by being smaller, having shorter horns and by its ornamentation of processes that frequently fusion at their distal tips.

Occurrence in East Greenland. The species seems to be a good marker species restricted to a very narrow interval in the uppermost Barremian. Sections 7, 17 and 21.

Pseudoceratium nudum Gocht, 1957 Plate 20, Figs 1–2

- 1957 *Pseudoceratium? nudum*; Gocht, p. 168, plate 18, figs 3, 4, 6.
- 1962 Pseudoceratium (Pseud.)? nudum; Neale & Sarjeant, p. 448.
- 1975 Pseudoceratium?; Wall & Evitt, plate 1, figs 10 & 11.
- 1977 Pseudoceratium nudum; Brideaux, p. 14, plate 5, fig. 3.
- 1980 Odontochitina nuda; Dörhöfer & Davies, p. 39.
- 1986 Pseudoceratium nudum; Bint, p. 145.

Comments. The species has been referred to the genus *Pseudoceratium* until Dörhöfer & Davies (1980, p. 39) transferred it to the genus *Odontochitina*, because, as they state, of its smooth periphragm and cavate nature. Bint (1986) emended the description of the genus *Pseudoceratium* (1986, p. 144) and included *P. nudum* without any comments (1986, p. 145).

Bint's transfer of the species may have been over-

looked by Lentin & Williams (1989, p. 261 and 306) who do not comment on the transfer. Helby (1987) also emended the genus *Pseudoceratium* but did not mention the species *P. nudum*.

The cavate (cornucavate) nature of *P. nudum* suggested by Dörhöfer & Davies (1980, p. 39) is not distinctly observable on the specimens from East Greenland. A cavate appearance may possibly be recognisable on Wall & Evitt's (1975) plate 1, fig. 11, but is not visible on the type material (Gocht's, 1957, plate 8, figs 3, 4, and 6, or on the specimen of Brideaux (1977) plate 5, fig. 3.

The poor documentation of a cavate nature is, according to the present author, too weak as evidence to keep the species in the genus *Odontochitina* and thus it is retained in *Pseudoceratium*.

Dimensions. (Measurements in μ .) See Fig. 12 for definitions of A-F.

	Holotype (Gocht)	Paratypes (Gocht)		Range	Specimens	
A			91	(114)	135	10
в	45-70	50	43	(57)	65	10
С	190-228	216		215		1
D			37	(55)	77	10
Е	75			80		1
F	57		51	(66)	99	10

Occurrence in East Greenland. Uppermost lower Barremian to lowermost Aptian. Sections 1, 7, 9, 11, 14, 15, 16, 17, 18, 19, 21, and 33.

Previous occurrences. Pseudoceratium nudum was previously recorded from the upper Hauterivian in Germany (Gocht, 1957, type material), lower Cretaceous, Speeton,

- Fig. 1. Pseudoceratium iveri sp. nov. holotype × 500, section 17; GGU 342166–5, 16.7–146.0; MGUH 21924.
- Fig. 2. Pseudoceratium iveri sp. nov. × 500, section 7; GGU 342086–5, 20.0–135.8; MGUH 21925.
- Fig. 3. Pseudoceratium iveri sp. nov. × 475, section 21; GGU 342239; MGUH 21926.
- Fig. 4. Pseudoceratium iveri sp. nov. × 1100, same specimen as above, close-up of plates near the sulcal area.
- Fig. 5. Pseudoceratium iveri sp. nov. × 610, section 21; GGU 342239; MGUH 21927.
- Fig. 6. Pseudoceratium iveri sp. nov. × 950, same specimen as above, close-up of surfaces on ectophragm and autophragm in the sulcal notch area.
- Fig. 7. Pseudoceratium iveri sp. nov. × 850, same specimen as above, close-up of sulcal area.
- Fig. 8. Pseudoceratium iveri sp. nov. × 500, section 7; GGU 342086–5, 11.1–142.2; MGUH 21928.

England (Wall & Evitt, 1975), Hauterivian and Barremian, (Millioud *et al.*, 1975) and Hauterivian to Barremian, District of Mackenzie, Canada (Brideaux, 1977).

Pseudoceratium pelliferum Gocht, 1957 Plate 20, Figs 3-6

Comments. The lengths of the apical, lateral and antapical horns are very variable in the present material but within the range of Gocht's (1957) type material, as illustrated below. Mutterlose & Harding (1987a, b) discussed the length of the horns and suggested that the variation could be related to changing water temperatures. The spines vary in length from very small to 4 μ . Their distribution occasionally shows a tabulation pattern. The density of the spines is very variable. The spines on one specimen (Plate 20, Fig. 5) show an anastomosing network and are occasionally joined distally by trabeculae.

Dimensions. (Measurements in μ .) See Fig. 12 for definitions of A-F.

	Holotype (Gocht)	otype Paratypes ocht) (Gocht)		Range			Specimens	
A	59				71	(94)	131	32
В	132	52	(57)	70	45	(57)	68	32
С	12	92	(132)	173	119	(142)	173	8
D	35				10	(26)	56	32
Е	25				17	(35)	56	8
F					17	(35)	57	32
S	2					1-4		

Remarks. The size of the horns and the length – width ratio of the cyst on some of the specimens recorded from the lower to lowermost upper Barremian (Plate 20, Fig. 6) are similar to *Pseudoceratium solocispinum* (Davey, 1974) Lentin & Williams, 1975; stat. nov. et emend. Harding (1990b). However, these specimens do not have the robust nature of the processes which, according to Harding (1990b), distinguishes *P. solocispinum* from *P. pelliferum*.

Occurrence in East Greenland. Lower and the lowermost upper Barremian. Sections 4, 7, 9, 10, 11, 14, 15, 16, 18 and 21.

A few specimens are recorded from the uppermost Barremian and the lower Aptian part of sections 7 and 33 and if they are *in situ* the species ranges up into the lower Aptian in East Greenland.

Previous occurrences. Pseudoceratium pelliferum was previously recorded from the lower and 'middle' Barremian, Speeton, England (Davey, 1974), the upper Ryazanian to upper Barremian, England and the North Sea (Costa & Davey, 1992), the Valanginian to Hauterivian, Germany (Gocht, 1957, type material), the lower Hauterivian to upper Aptian, north-west Germany (Prössl, 1990), upper Ryazanian to lower Aptian, north-west Europe (Heilmann-Clausen, 1987), upper Barremian to lower Aptian, south-east England (Lister & Batten, 1988), Barremian, offshore southern Norway (Costa 1981), Hauterivian, Barremian and Aptian, Arctic Norway (Thusu, 1978), lower Barremian offshore southern Norway (Aarhus et al., 1986), lower Aptian, Arctic Canada (Doerenkamp et al., 1976) and upper Berriasian to lower Aptian, world-wide (Williams & Bujak, 1985). Harding (1990b) reported the last occurrence of the species in England and Germany in the lower upper Barremian and mentioned that P. pelliferum or P. solocispinum reported from post-Barremian strata should be treated with caution as they are likely to be reworked or to be misidentifications.

Pseudoceratium polymorphum (Eisenack, 1958; emend. Dörhöfer & Davies, 1980) Bint, 1986 Plate 21, Figs 1–5

Comments. The ornamentation on the studied material is composed of complex process crests concentrated on the sutural areas. In the centre of both the dorsal and ventral surfaces there is an almost circular area devoid of ornamentation. The processes are broad based, often interconnected, and distally becoming digitate or multifurcate and occasionally joined by trabeculae.

- Fig. 1. *Pseudoceratium nudum* × 500, section 11; GGU 342106–4, 12.3–141.0; MGUH 21929.
- Fig. 2. *Pseudoceratium nudum* × 500, section 7; GGU 342087–4, 13.6–126.9; MGUH 21930.
- Fig. 3. Pseudoceratium pelliferum × 500, section 10; GGU 342092-4, 11.8-134.8; MGUH 21931.
- Fig. 4. Pseudoceratium pelliferum × 500, section 16; GGU 351512-4, 9.4-141.1; MGUH 21932.
- Fig. 5. *Pseudoceratium pelliferum* × 500, section 18; GGU 342221–4, 9.9–148.6; MGUH 21933.
- Fig. 6. *Pseudoceratium pelliferum* × 500, section 10; GGU 342092–4, 13.2–124.9; MGUH 21934.
- Fig. 7. Pseudoceratium cf. P. solocispinum × 500, section 19; GGU 342214-4, 20.5-132.0; MGUH 21935.
- Fig. 8. Pseudoceratium cf. P. solocispinum × 500, section 11; GGU 342105-4, 19.0-122.0; MGUH 21936.
- Fig. 9. Pseudoceratium cf. P. solocispinum × 500, section 8; GGU 342076-4, 5.5-125.3; MGUH 21937.

Dimensions. (Measurements in μ .) See Fig. 12 for definitions of A-B.

		Range	2	Specimens	
A	65	(89)	102	8	
В	83	(102)	122	8	
Process crests	3	(7)	14	8	

Occurrence in East Greenland. Lower to lowermost upper Albian. Sections 5, 13, 20, 21, 22, 23, 26 and 29.

Previous occurrences. Pseudoceratium polymorphum was previously recorded from the upper Aptian, Germany (Eisenack, 1958, type material), the uppermost lower and upper Aptian, France (Davey & Verdier, 1974), the lower and upper Aptian in England and the North Sea (Costa & Davey, 1992), the uppermost lower and upper Aptian, south-east England (Lister & Batten, 1988), the Aptian lower Albian to middle Albian, Spitsbergen and middle Albian, Barents Sea, as the Aptea polymorpha - Cyclonephelium compactum group (Århus, 1991), lower Aptian to lower Albian in north-west Europe (Heilmann-Clausen, 1987), upper Aptian, as Aptea polymorpha, north-west Germany (Prössl, 1990), Aptian to upper Albian, Peace River area, western Canada (Singh, 1971) and lower and upper Aptian, world-wide (Williams & Bujak, 1985).

Pseudoceratium cf. P. retusum Brideaux, 1977 Plate 21, Figs 6–10

Comments. In the material from East Greenland, the specimens assigned to *Pseudoceratium* cf. *P. retusum* have slightly longer lateral and antapical horns than those described and illustrated by Brideaux (1977), whereas the spines are shorter, $1-3 \mu$, compared to $3-8 \mu$ on Brideaux's type material.

Dimensions. (Measurements in μ .) See Fig. 12 for definitions of A-F.

Holotype (Brideaux)		Paratypes (Brideaux)	Speci- mens		Speci- mens		
A		63-93	46	51	(74)	88	9
В				48	(68)	79	9
С	100	93-120	17	93	(98)	102	2
D	10			5	(22)	34	9
Е	25	14-25	17		20		1
F				8	(23)	38	9

Occurrence in East Greenland. Lower Aptian. Sections 7, 13, 17, 19 and 33.

Previous occurrences. Pseudoceratium retusum was previously recorded from the lower Aptian, south-east England (Lister & Batten, 1988), Barremian to Aptian, District of Mackenzie, Canada (Brideaux, 1977, type material), Barremian and Aptian, Libya (Uwins & Batten, 1988).

The forms illustrated as *Pseudoceratium pelliferum* by Pocock (1962) and Singh (1971) from Aptian? and lower to middle Albian, Alberta, western Canada are, according to Brideaux (1977 p. 14), similar to *P. retusum*.

Pseudoceratium cf. *P. solocispinum* (Davey, 1974) Lentin & Williams, 1975; stat. nov. et. emend. Harding (1990b) Plate 20, Figs 7–9

Comments. The specimens from East Greenland are similar in shape and size to the type material described by Harding (1990b), whereas the spines on *P*. cf. *P. solocispinum* are slightly smaller and do not have all the characteristic features described from the holotype.

Dimensions. (Measurements in μ .) See Fig. 12 for definitions of A-F.

- Fig. 1. Pseudoceratium polymorphum × 500, section 20; GGU 342191–5 6.8–130.8; MGUH 21938.
- Fig. 2. Pseudoceratium polymorphum × 540, section 20; GGU 342191; MGUH 21939.
- Fig. 3. Pseudoceratium polymorphum × 750, same specimen as above, close-up of antapical horn, section 20; GGU 342191.
- Fig. 4. Pseudoceratium polymorphum × 500, section 20; GGU 342201–4, 6.5–121.7; MGUH 21940.
- Fig. 5. Pseudoceratium polymorphum × 500, section 22; GGU 346584-4, 10.4-122.9; MGUH 21941.
- Fig. 6. Pseudoceratium cf. P. retusum × 500, section 7; GGU 342087–11, 7.1–152.4; MGUH 21942.
- Fig. 7. Pseudoceratium cf. P. retusum × 500, section 7; GGU 342087–10, 18.5–132.0; MGUH 21943.
- Fig. 8. Pseudoceratium cf. P. retusum × 500, section 7; GGU 342087-4, 12.6-154.1; MGUH 21944.
- Fig. 9. *Pseudoceratium* cf. *P. retusum* × 500, section 7; GGU 342087–4, 13.2–122.8; MGUH 21945.
- Fig. 10. Pseudoceratium cf. P. retusum × 500, section 7; GGU 342087-4, 21.1-120.9; MGUH 21946.
- Fig. 11. Pseudoceratium toveae sp. nov. × 500, section 14; GGU 342132–4, 11.9–125.0; MGUH 21947.

Harding (1990b) Speci-Range Specimens mens A 66 (85) 73 26 (74) 85 7 60 В 48 (58)62 (56) 63 7 26 50 C 108 (122.6) 130 11 100 (107) 120 3 D 9 (13)17 7 Ē 17 (21)28 3 F 14 (19)23 7

Occurrence in East Greenland. Uppermost Barremian. Sections 8, 11 and 19.

Previous occurrences. Pseudoceratium solocispinum was previously recorded from the upper Barremian at Speeton, England (Davey, 1974; Duxbury, 1980). Harding (1990b) recorded the species from the uppermost Barremian in England and Germany where P. solocispinum is only observed stratigraphically above P. pelliferum.

Pseudoceratium toveae sp. nov. Plate 21, Fig. 11; Plate 22, Figs 1-7

Origin of name. After Professor Tove Birkelund who, with her detailed studies of ammonites from Greenland, provided a major biostratigraphic framework for future work.

Diagnosis. Large, dorso-ventrally compressed ceratioid, proximate cyst, with three large horns. The cyst is twolayered with a smooth to microgranulate autophragm and an intratabular reticulate ectophragm, the autophragm and ectophragm are closely adpressed. Tabulation is indicated by bold pandasutural areas. Archeopyle apical (type tA).

Description

Cyst type. The cyst is proximate ceratioid.

Shape. The cyst has three long horns: one apical, one right lateral and one antapical. The angle between the horn is approximately 120°.

Wall relationship. The cyst wall is two-layered, composed of closely adpressed autophragm and ectophragm.

Wall features. The autophragm, which is only visible on the pandasutural areas, has a smooth to microgranulate outer surface (Plate 22, Fig. 5). The ectophragm forming the ornamentation is restricted to the intratabular areas and is composed of low processes (less than 1 μ). The surface of the ectophragm is reticulate (Plate 22, Figs 5 & 7). The processes are of variable size often making it difficult to distinguish the two layers, especially on the horns.

Tabulation. The tabulation is expressed by the pandasutural areas which are devoid of the reticulate ectophragm, and by the archeopyle sutures. The cingular plates are occasionally distinguishable (Plate 22, Fig. 5) but no sulcal area has been observed. Tabulation formula: ?4', ?6", ?6S, ?6", ?1P, 1"".

Archeopyle. The archeopyle is apical (type tA).

Holotype. Plate 22, Fig 1, MGUH 21948 from GGU 360371-3, 15,3-132,0.

Type locality. Section 1 north of Haystack, East Greenland (Fig. 2).

Dimensions. (Measurement in μ .) See Fig. 12 for definitions of A-F.

	Holotype		Range	e	Specimens
A	119	99	(130)	165	15
В	73	63	(68)	74	15
С	190	193	(219)	250	4
D	68	54	(65)	85	15
E	56	68	(88)	119	4
F	57	54	(70)	99	15

Discussion. Pseudoceratium toveae sp. nov. resembles Pseudoceratium weymouthense in size and shape, described from the upper Tithonian to lower Berriasian of Australia by Helby (1987). However, P. weymouthense differs by its weak tabulation, indicated by larger processes in the pandasutural areas which, according to

Plate 22

- Fig. 1. Pseudoceratium toveae sp. nov. holotype x 500, section 1; GGU 360371-3, 15.3-132.0; MGUH 21948.
- Fig. 2. Pseudoceratium toveae sp. nov. × 500, section 8; GGU 342072-4, 12.1-127.6; MGUH 21949.
- Fig. 3. Pseudoceratium toveae sp. nov. × 500, section 17; GGU 342161-5, 11.1-149.4; MGUH 21950.
- Fig. 4. Pseudoceratium toveae sp. nov. × 540, section 17; GGU 342164; MGUH 21951.
- Fig. 5. Pseudoceratium toveae sp. nov. x 1400, same specimen as above, close-up of surface ornamentation on the ectophragm and autophragm, which make up the pandasutures. Cingular plates are seen in the lower part of the figure.
- Fig. 6. Pseudoceratium toveae sp. nov. × 540, section 21; GGU 342238; MGUH 21952.
- Fig. 7. Pseudoceratium toveae sp. nov. x 2300, same specimen as above, close-up of plates close to the cingulum.

Helby (1987 p. 317), are apparently covered by a continuous ectophragm, and by its rather pronounced extension of the cingulum onto the anterior part of the post-cingular horn.

Pseudoceratium toveae differs by its larger size and less pronounced reticulate ectophragm from *P. aulaeum*, described by Harding (1990b) from a presumed low salinity assemblage of late Barremian age in the Warlingham borehole, England.

Pseudoceratium toveae differs from *P. gochtii* Neale & Sarjeant (1962) by its lack of spines and by its larger horns. Duxbury (1977, p. 60) questioned the species *P. gochtii* and regarded Neale & Sarjeant's specimens as belonging in *P. pelliferum*.

The species *Eopseudoceratium* sp. cf. *E. gochtii* recorded from the Barremian of the District of Mackenzie by Brideaux & Myhr (1976), Brideaux (1976, plate 44.2, fig. 2) and Brideaux (1977, p. 14, plate 5, fig. 4), may belong to *P. toveae* but the available illustrations and description are insufficient for a close comparison.

Occurrence in East Greenland. Upper Barremian to lowermost? Aptian. Sections 1, 6, 7, 8, 11, 14, 15, 16, 17, 19, 21 and 33.

Genus Pterodinium Eisenack, 1958; emend. Sarjeant, 1985a Pterodinium sp. Plate 25, Fig. 10

Occurrence in East Greenland. Only one specimen has been recorded from the uppermost middle Albian, section 20.

Genus *Rhombodella* Cookson & Eisenack, 1962b; emend. Sung Zhi-chen *et al.* ('Jiabo'), 1978 *Rhombodella paucispina* (Alberti, 1961) Duxbury, 1980 Plate 23, Figs 1–7

Comments. The majority of the specimens recorded in the present study have $4-5 \mu$ long spines concentrated on the poles and on the flanks of the body as described by Alberti (1961, p. 19–20). However, together with the forms hereby referred to *R. paucispina*, there occurs forms with no or only very small spines (Plate 23, Figs 6 & 7). The specimens without spines might be similar to the Lower Tertiary *Rhombodella baculata* described by Sung Zhi-chen *et al.*, ('Jiabo'), 1978, (this paper is cited as Sung Zhi-chen *et al.*, 1978 in Chen Yow-yuh *et al.*,

1988) from China, although comparison has been difficult as the present author only has a poor copy of Sung Zhi-chen *et al.'s* ('Jiabo') illustrations of *R. baculata*.

Among the numerous specimens observed in the present study, several exhibit an angular opening, probably an archeopyle, close to what is interpreted as the apical pole (Plate 23, Figs 3 & 6). Another opening, circular in outline, has been observed (Plate 23, Figs 3 & 6) at the interpreted antapical pole. This circular hole may be an opisthopyle. The presumed archeopyle and opisthopyle have been observed both on forms with and without spines. The two forms might represent environmental adaptions of a single species.

Occurrence in East Greenland. Middle and upper Albian. Sections 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39 and 40. The species is very rare in the middle Albian but becomes abundant to dominant in the upper Albian.

Previous occurrences. Rhombodella paucispina was previously recorded from the upper Aptian and lower Albian, north-west Germany (as *R. natans*, Davey, 1982a), uppermost Aptian to upper Cenomanian, north-west Ger-

- Fig. 1. *Rhombodella paucispina* × 750, section 30; GGU 324615–3, 3.8–120.5; MGUH 21953.
- Fig. 2. *Rhombodella paucispina* × 500, section 38, GGU 303127–15–4, 16.3–119.5; MGUH 21954.
- Fig. 3. Rhombodella paucispina × 750, section 35; GGU 346456; MGUH 21955.
- Fig. 4. Rhombodella paucispina × 1000, section 30; GGU 324615; MGUH 21956.
- Fig. 5. Rhombodella paucispina × 825, section 30; GGU 324615; MGUH 21957.
- Fig. 6. *Rhombodella paucispina* × 750, specimen without spines, section 30; GGU 324619–6, 18.2–124.3; MGUH 21958.
- Fig. 7. Rhombodella paucispina × 750, specimen without spines, section 30; GGU 324619–6, 15.2–124.4; MGUH 21959.
- Fig. 8. *Rhombodella vesca* × 500, section 1; GGU 360380–4, 13.3–123.8; MGUH 21960.
- Fig. 9. *Rhynchodiniopsis* cf. *R. aptiana* × 500, section 14; GGU 342072–4, 6.9–126.5; MGUH 21961.
- Fig. 10. *Rhynchodiniopsis* cf. *R. aptiana* × 500, section 17; GGU 342161–4, 6.4–129.1; MGUH 21962.
- Fig. 11. *Rhynchodiniopsis fimbriata* × 500, section 15; GGU 351527–3, 12.3–135.6; MGUH 21963.
- Fig. 12. *Rigaudella* sp. × 500, section 9; GGU 342069–3, 8.9– 130.2; MGUH 21964.
- Fig. 13. *Rigaudella* sp. × 500, section 9; GGU 342070-7, 9,1-140,3; MGUH 21965.

many (Prössl, 1990), Albian in Germany (as *Palaeo-hystrichophora paucispina*, Alberti, 1961, type material), middle to upper Albian, France (as *R. natans*, Davey & Verdier, 1971). Present in the middle Albian, Barents Sea (Århus, 1991), recorded from the Aptian to Albian, Australia (as *Rhombodella natans*) by Cookson & Eisenack (1962b) and from the upper Albian to lower Cenomanian, Bathurst Island, Australia (as *R. natans*) by Norvick & Burger (1976). The species has not previously been reported from Canada but examination of middle and upper Albian samples from Axel Heiberg Island, Arctic Canada (kindly provided to me by I.S.P.G., Calgary, Canada) proved its presence in North America.

Rhombodella vesca Duxbury, 1980 Plate 23, Fig. 8

Occurrence in East Greenland. Two specimens have been recorded, one from the upper Barremian section 1 and one from the lower Aptian section 33.

Previous occurrences. Rhombodella vesca was previously recorded from the 'middle' Barremian, Speeton, England (Duxbury, 1980, type material). Harding (1990b) reported the species from the upper Hauterivian to upper Barremian, north Germany and from the lower and upper Barremian, Speeton. The species has also been recorded from a narrow interval in the lowermost upper Aptian, south-east England (Duxbury, 1983) and from the uppermost Hauterivian to the mid lower Albian, north-west Germany (Prössl, 1990).

Genus *Rhynchodiniopsis* Deflandre, 1935; emend. Jan du Chêne *et al.*, 1985b *Rhynchodiniopsis* cf. *R. aptiana* Deflandre, 1935; emend. Sarjeant, 1982b Plate 23, Figs 9-10

Comments. The specimens recorded from East Greenland differ from the type material by having lower and less denticular sutural crests.

Occurrence in East Greenland. Lower to upper Barremian. Sections 1, 10, 14, 17 and 21.

Previous occurrences. Rhynchodiniopsis aptiana was previously recorded from the lower Hauterivian to the lowermost upper Barremian, north-west Germany (Prössl, 1990), 'middle' Barremian to upper Aptian, north-west Europe (Heilmann-Clausen, 1987). The Aptian recording is based on the occurrence of the holotype in a flint of Aptian age, although, the species appears to be more typical for the Barremian according to Heilmann-Clausen (1987). However, Lister & Batten (1988) reported the species from the lower to upper Aptian, south-east England.

Rhynchodiniopsis fimbriata (Duxbury, 1980) Sarjeant 1982b Plate 23, Fig. 11

Occurrence in East Greenland. Lower and upper Barremian. Sections 8 and 15.

Previous occurrences. Rhynchodiniopsis fimbriata was previously recorded from the 'middle' Barremian, Speeton, England (Duxbury, 1980, type material), uppermost 'middle' Barremian, north-west Germany (Prössl, 1990), upper Hauterivian to upper Barremian, Gott, Germany and upper Hauterivian to lower Aptian, England (Harding, 1990b).

Genus *Rigaudella* Below 1982b *Rigaudella* sp. Plate 23, Figs 12–13

Comments. Specimens of an undetermined species of *Rigaudella* have been recorded from six of the studied sections. The specimens are regarded as reworked from the Jurassic.

Occurrence in East Greenland. Barremian. Sections 9, 10, 11, 18, 19 and 21.

Genus Senoniasphaera Clarke & Verdier, 1967 Senoniasphaera microreticulata Brideaux & McIntyre, 1975 Plate 24, Fig. 1

Occurrence in East Greenland. Upper Aptian to lower Albian. Sections 12, 13 and 17. The species is quite common in this interval and seems to be a good stratigraphic marker.

Previous occurrences. Senoniasphaera microreticulata was previously recorded from the middle Albian, Barents Sea, Norway (Århus, 1991), from the middle Albian, District of Mackenzie, Canada (Brideaux & McIntyre, 1975, type material) and from the lower to upper Albian, offshore eastern Canada (Bujak & Williams, 1978). For further discussion, see the Senoniasphaera microreticulata Subzone, in the chapter on zonation.

Genus Sentusidinium Sarjeant and Stover, 1978

Sentusidinium verrucosum (Sarjeant, 1968) Sarjeant & Stover, 1978 Plate 24, Fig. 2

Occurrence in East Greenland. Upper Barremian to upper Albian. Sections 6, 13, 17, 20 and 25. The species is rare and might be reworked.

Previous occurrences. Sentusidinium verrucosum was previously recorded from the upper Jurassic in France and East Greenland by Sarjeant (1968, type material) and Fensome (1979).

Sentusidinium sp. 1 Plate 24, Fig. 3

Description. Ovoidal cyst with numerous baculae and/or echinae. Archeopyle apical, seldom attached. The species has some similarity to *Sentusidinium* sp. E described from the Jurassic of East Greenland by Fensome (1979, p. 20).

Occurrence in East Greenland. Lower Barremian to upper Albian. The species has been recorded from 31 of the examined 40 sections and is quite common.

Sentusidinium sp. 2 Plate 24, Fig. 4

Description. Ovoidal cyst with a setose ornamentation. Archeopyle apical, seldom attached. Sentusidinium sp. 2 differs from Sentusidinium sp. 1 by having longer and more densely spaced baculae and echinae. The species also differs from S. echinatum (Gitmez & Sarjeant, 1972) Sarjeant & Stover, 1978, originally reported from the Jurassic, which is covered by fewer and slightly smaller echinae.

Occurrence in East Greenland. Lower Barremian to upper Albian. The species has been recorded from 22 of the 40 examined sections.

Genus Sirmiodinium Alberti, 1961 Sirmiodinium grossii Alberti, 1961; emend. Warren, 1973 Plate 25, Fig. 1

Occurrence in East Greenland. Lower Barremian to lower Aptian. Sections 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21 and 32.

Previous selected occurrences. Sirmiodinium grossii was previously recorded from the upper Bathonian (Jurassic) to lower Aptian, England and the North Sea (Costa & Davey, 1992), upper Hauterivian to upper Barremian, Germany (Alberti, 1961) and Jurassic to lowermost Albian, north-west Europe (Heilmann-Clausen, 1987, p. 19 for his comments on the species range).

Genus Spiniferites Mantell, 1850; emend. Sarjeant, 1970 Spiniferites spp. Plate 25, Figs 2-9

Remarks. In the present study no attempt has been made to distinguish between the species of *Spiniferites*.

Occurrence in East Greenland. Barremian to Albian. Species of *Spiniferites* have been recorded in 38 of the 40 examined sections.

Genus Stiphrosphaeridium Davey, 1982b Stiphrosphaeridium cf. S. anthophorum (Cookson & Eisenack, 1958) Davey, 1982b Plate 25, Figs 13-14

Comments. The specimens herein assigned to *S. cf. S. anthophorum* include forms with deeply fenestrate processes and entire, finely serrate distal edges (Plate 25, Fig. 14) similar to the type material described by Cookson & Eisenack (1958) but also forms with less fenestrate processes often with an incompletely developed, circular, slightly spinous distal trabecula (Plate 25, Fig. 13).

Occurrence in East Greenland. Lower Barremian to middle Albian. Sections 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22 and 23.

Previous selected occurrences. Stiphrosphaeridium anthophorum was previously recorded from the Upper Jurassic to lower Ryazanian, upper Barremian and upper Aptian to lower Albian, north-west Europe (Heilmann-Clausen, 1987) and upper Barremian to lowermost upper Albian, north-west Germany (Prössl, 1990). Costa & Davey (1992) recorded a lowermost upper Albian last occurrence for the species in England and the North Sea. The type material was described from the Upper Jurassic and Aptian to Albian in Australia and Papua New Guniea by Cookson & Eisenack (1958). Genus Subtilisphaera Jain & Millepied, 1973; emend. Lentin & Williams, 1976 Subtilisphaera kalaalliti sp. nov. Plate 26, Figs 1–5

Origin of name. Greenlandic: kalaallit; people.

Diagnosis. The species is represented by thin-walled pentagonal, partly hypocavate cysts. Epicyst long, conical, tapering from the cingulum; hypocyst short with one broad-based antapical horn. A presumed intercalary archeopyle is seldom observed, whereas a secondary opening, an opisthopyle, is almost always present antapically.

Description

Cyst type. Partly hypocavate cyst.

Shape. Dorsoventrally compressed pentagonal cyst. Epicyst long (almost twice the length of the hypocyst), conical, tapering from the cingulum. Hypocyst short, angular, with one broad-based antapical horn.

Wall relationships. Cyst wall two-layered, endophragm and periphragm closely appressed on the epicyst, cingulum and anterior part of the hypocyst, whereas a pericoel is present in the antapical part of the hypocyst (including the horn).

Wall features. Endophragm thin-walled, hyaline, with a psilate to shagreenate surface. Periphragm thin-walled, hyaline, also with an almost smooth surface.

Tabulation. A cingular furrow has been distinguished between two periphragmal folds running almost parallel two thirds down the cysts.

Archeopyle. A presumed intercalary archeopyle may be distinguished on a few specimens, whereas an antapical opening (an ophistopyle) next to the antapical horn, is almost always present.

Holotype. Plate 26, Figs 1 & 2, MGUH 21992 from GGU 324622–3, 23.0–138.4.

Type locality. Section 30, Tværdal, Geographical Society Ø, East Greenland (Fig. 2).

Dimensions. (Measurements in μ .)

	Holotype		Range	e	Specimens
Total length	74	60	(70)	85	9
Width	55	42	(47)	61	9
Length antapical horn	13	8	(10)	14	9

Discussion. Subtilisphaera kalaalliti sp. nov. resembles in shape and size Cepadinium ventriosum (Alberti, 1959a) Lister & Batten, 1988, but differs from the genus Cepadinium by being a double-walled cyst. The new species has been included in the genus Subtilisphaera, because of its two wall layers and cavate nature, its weakly discernible archeopyle, and the absence of tabulation except for the low transverse equatorial folds or ridges that most likely indicate a cingulum.

The species *S. pirnaensis* (Alberti, 1959a) Jain & Millepied, 1973 resembles *S. kalaalliti* in shape, but differs by being cavate to bicavate and by its slightly larger size.

Palaeoperidinium cretaceum differs from S. kalaalliti by its slightly larger size, by having two conical antapical horns and by having a periphragm of similar shape as the endophragm.

Occurrence in East Greenland. Upper Albian. Sections 24, 25, 26?, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39 and 40 where it is quite abundant.

- Fig. 1. Senoniasphaera microreticulata × 500, section 17; GGU 342172–4, 12.1–127.1; MGUH 21966.
- Fig. 2. Sentusidinium verrucosum × 500, section 17; GGU 342169–4, 14.7–138.2; MGUH 21967.
- Fig. 3. Sentusidinium sp. 1 × 700, section 17; GGU 342169-4, 7.3-130.2; MGUH 21968.
- Fig. 4. Sentusidinium sp. 2 × 750, section 17; GGU 342169-4, 13.0-153.7; MGUH 21969.
- Fig. 5. Ovoidinium? sp. 1 × 500, section 30; GGU 324615–7, 19.0–127.8; MGUH 21970.
- Fig. 6. Ovoidinium? sp. 1 × 500, section 30; GGU 324615–7, 22.5–128.8; MGUH 21971.
- Fig. 7. Ovoidinium? sp. 1 × 700, section 24; GGU 346451-4, 5.6-143.0; MGUH 21972.
- Fig. 8. Ovoidinium? sp. 1 × 500, section 15; GGU 351526-4, 2.0-144.9; MGUH 21973.
- Fig. 9. Ovoidinium? sp. 1 × 800, section 24; GGU 346456; MGUH 21974.
- Fig. 10. Ovoidinium? sp. 1 × 800, section 25; GGU 346442; MGUH 21975.
- Fig. 11. Ovoidinium? sp. 1 × 700, section 40; GGU 303125–1; MGUH 21976.
- Fig. 12. Ovoidinium? sp. 1 × 700, section 24; GGU 346456; MGUH 21977.
- Fig. 13. Ovoidinium? sp. 1 1 × 500, same specimen as Fig. 10 above, close-up of archeopyle, section 25; GGU 346442.
- Fig. 14. Ovoidinium? sp. 1 × 2000, same specimen as Fig. 11 above, close-up of archeopyle, section 40; GGU 303125-2.

Subtilisphaera perlucida (Alberti, 1959b) Jain & Millepied, 1973 Plate 26, Fig. 6

Occurrence in East Greenland. Lower Barremian to middle Albian. Sections 7, 11, 12, 13, 14, 17, 19, 21, 23, 32 and 33. One questionable specimen has been recorded from the upper Albian section 36.

Previous selected occurrences. Subtilisphaera perlucida was previously recorded from the upper Barremian, Germany (Alberti, 1959, type material), lower and upper Aptian, Aptian type section, south-east France (Davey & Verdier, 1974), the lower Barremian to lowermost Albian, north-west Europe (Heilmann-Clausen, 1987), upper Hauterivian to upper Barremian, north-west Germany (Prössl, 1990) and from the upper Hauterivian to lower Albian, world-wide (Williams & Bujak, 1985).

Genus Surculosphaeridium Davey et al., 1966; emend. Davey, 1982b Surculosphaeridium aff. S. phoenix (Duxbury, 1980) Lentin & Williams, 1981 Plate 26, Figs 7–8

Comments. The specimens herein described as *S.* aff. *S. phoenix* have the characteristic processes illustrated by Duxbury (1980) but the number of processes is greater on the specimens from East Greenland.

Occurrence in East Greenland. Lower Barremian to lower Albian. Sections 1, 2, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18 and 21.

Previous occurrence. The type material was described from the Barremian, England (Duxbury, 1980).

Genus Systematophora Klement, 1960 Systematophora aff. S. cretacea Davey, 1979b Plate 26, Figs 9–13

Comments. The specimens are very similar to the type material described by Davey (1979a, p. 560) but differs in its slightly smaller size and by its less densely granular periphragm.

Occurrence in East Greenland. Lower Barremian to lower Albian. Sections 7, 11, 15, 17, 20 and 21.

Previous occurrences. Systematophora cretacea was pre-

viously recorded from the lower Albian, southern England (Duxbury, 1983), middle Albian, England and the North Sea (Costa & Davey, 1992), lower and upper Aptian, south-east England, (as *S.* sp. cf. *S. cretacea* by Lister & Batten, 1988), upper Aptian to lower Cenomanian, north-west Germany (Prössl, 1990) and Albian, northern Bay of Biscay, offshore W. France (Davey, 1979a, type material).

Genus Tanyosphaeridium Davey & Williams, 1966b Tanyosphaeridium boletum Davey, 1974 Plate 27, Figs 1-3

Comments. The present specimens of *T. boletum* have more than 30 processes, commonly 40 to 75. The processes show a circular alignment parallel to the central body width. A narrow cingular area devoid of processes has been observed on the majority of the specimens. The surface of the cyst is shagreenate to granulate. The processes are long $(17-25 \ \mu)$, slender $(0.5-2 \ \mu)$ and are distally expanded and often recurved or slightly furcated.

- Fig. 1. Sirmiodinium grossii × 500, section 21; GGU 342234-7, 4.5-147.4; MGUH 21978.
- Fig. 2. Spiniferites sp. × 500, section 14; GGU 342134-4, 10.0-137.2; MGUH 21979.
- Fig. 3. Spiniferites sp. × 500, section 19; GGU 342215-3, 5.5-128.0; MGUH 21980.
- Fig. 4. Spiniferites sp. × 500, section 20; GGU 342176-4, 2.8-123.8; MGUH 21981.
- Fig. 5. Spiniferites sp. × 750, section 31; GGU 342623-4, 4.5-123.5; MGUH 21982.
- Fig. 6. Spiniferites sp. × 500, section 14; GGU 342135-3, 12.0-140.0; MGUH 21983.
- Fig. 7. Spiniferites sp. × 500, section 21; GGU 342230-7, 13.5-147.4; MGUH 21984.
- Fig. 8. Spiniferites sp. × 500, section 21; GGU 342235-4, 18.6-131.8; MGUH 21985.
- Fig. 9. Spiniferites sp. × 500, section 30; GGU 324609-7, 7.4-148.7; MGUH 21986.
- Fig. 10. *Pterodinium* sp. × 750, section 20; GGU 342202-4, 18.1–132.2; MGUH 21987.
- Fig. 11. *Hapsocysta? benteae* sp. nov. holotype, × 500, section 21; GGU 342240-4, 10.0-140.0; MGUH 21988.
- Fig. 12. Hapsocysta? benteae sp. nov. × 500, section 30; GGU 342619–3, 10.2–131.0; MGUH 21989.
- Fig. 13. *Stiphrosphaeridium* cf. *S. anthophorum* × 500, section 19; GGU 342216–4, 17.3–129.4; MGUH 21990.
- Fig. 14. *Stiphrosphaeridium* cf. *S. anthophorum* × 500, section 20; GGU 342176–5, 19.4–147.0; MGUH 21991.

Occurrence in East Greenland. Lower Barremian to upper Albian. Sections 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 33 and 34.

Previous occurrences. Tanyosphaeridium boletum was previously recorded from the Barremian at Speeton, England (Davey, 1974, type material), lower and upper Aptian, south-east England (Lister & Batten, 1988) and lower Hauterivian to upper Aptian, north-west Germany (Prössl, 1990).

Tanyosphaeridium cf. *T. isocalamus* (Deflandre & Cookson, 1955) Davey & Williams, 1969 Plate 27, Fig. 4

Comments. Tanyasphaeridium cf. *T. isocalamus* differs slightly from the type material described by Deflandre & Cookson (1955) by its somewhat expanded process tips, which seem to be serrate rather than cleanly truncate.

Occurrence in East Greenland. Only a few specimens are recorded from the lower Barremian in section 21, whereas the majority (approximately 10 specimens) occur in the middle and upper Albian. Sections 20, 23 and 25.

Previous occurrences. Tanyosphaeridium isocalamus was previously recorded from the lower Hauterivian to lowermost Barremian, north-west Germany (Prössl, 1990) and Lower Cretaceous, Australia (Deflandre & Cookson, 1955, type material).

Tanyosphaeridium salpinx Norvick, 1976 Plate 27, Fig. 5-7

Comments. The species has approximately 30 moderately long (10–22 μ), broad (2–3 μ) processes, with trumpet-like terminations.

Occurrence in East Greenland. Barremian. Sections 15 and 18, middle and upper Albian. Sections 23, 25 and 39.

Previous occurrences. Tanyosphaeridium salpinx was previously recorded from the lower Aptian, south-east England (Lister & Batten, 1988), lower Hauterivian to upper Turonian, north-west Germany (Prössl, 1990), Aptian to Cenomanian, Peace River area, Canada, as Tanyosphaeridium sp. (Singh, 1971) and Cenomanian from the same area (Singh, 1983), Cenomanian, Australia (Norvick, 1976 in Norvick & Burger, 1976, type material) and Aptian to Cenomanian, Australia (Morgan, 1980). Genus Trichodinium Eisenack & Cookson, 1960; emend. Clarke & Verdier, 1967 Trichodinium speetonense Davey, 1974 Plate 27, Figs 8-9

Occurrence in East Greenland. Lower Barremian to lowermost Aptian. Sections 1, 6, 7, 8, 11, 14, 15, 16, 17, 18, 19, 21, 32 and 33.

Previous occurrences. Trichodinium speetonense was previously recorded from the lower, 'middle' and upper Barremian, Speeton, England (Davey, 1974, type material), upper Barremian, England and the North Sea (Costa & Davey, 1992), the upper Hauterivian to top of the Barremian, north-west Europe (Heilmann-Clausen, 1987), lower Hauterivian to upper Aptian, north-west Germany (Prössl, 1990). Harding (1990b, p. 53) mentions that the species first occurs in the middle part of the lower Barremian, Speeton, England, and Gott, Germany where the species ranges up to the top of the upper Barremian. Harding (1990b, table 7) also reported the species from the Warlingham borehole, England where it occurred in Aptian strata. The present observations from East Greenland agree with Hardings's (1990b) range.

- Figs 1 & 2. Subtilisphaera kalaalliti sp. nov. holotype × 730, section 30; GGU 324622–3, 23.0–138.4; MGUH 21992.
- Figs 3 & 4. Subtilisphaera kalaalliti sp. nov. × 500, section 30; GGU 324622–3, 6.0–123.8; MGUH 21993.
- Fig. 5. Subtilisphaera kalaalliti sp. nov. × 500, section 12; GGU 324654; MGUH 21994.
- Fig. 6. Subtilisphaera perlucida × 700, section 17; GGU 342169–4, 9.7–143.0; MGUH 21995.
- Fig. 7. Surculosphaeridium aff. S. phoenix × 500, section 2; GGU 351558-4, 3.7-129.7; MGUH 21996.
- Fig. 8. Surculosphaeridium aff. S. phoenix × 500, section 8; GGU 342076–4, 9.5–129.0; MGUH 21997.
- Fig. 9. Systematophora aff. S. cretacea × 500, section 7; GGU 342085–4, 40.0–129.0; MGUH 21998.
- Fig. 10. Systematophora aff. S. cretacea × 500, section 17; GGU 342161-4, 5.0–130.8; MGUH 21999.
- Fig. 11. Systematophora aff. S. cretacea × 500, fragment showing the annulate complex of processes, section 21; GGU 342237–4, 3.5–139.1; MGUH 22000.
- Fig. 12. Systematophora aff. S. cretacea × 725, section 17, GGU 342166; MGUH 22001.
- Fig. 13. Systematophora aff. S. cretacea \times 1200, same specimen as above, close-up of the annulate complex of the processes and the cyst surface.

Genus *Tubotuberella* Vozzhennikova, 1967; emend. Sarjeant, 1982 *Tubotuberella uncinata* (Brideaux, 1977) Davies, 1983 Plate 27, Fig. 10

Occurrence in East Greenland. Lower Barremian. Sections 9, and 11.

Previous occurrences. Tubotuberella uncinata was previously recorded from the Hauterivian and Barremian, District of Mackenzie, Canada (Brideaux, 1977). The species has not previously been reported outside Canada, but one specimen was recorded by Heilmann-Clausen (personal communication, 1990) from the Barremian in the Ahlum-1 well in the Lower Saxony Basin, Germany. The species is rare, but seems to be a good stratigraphical index species for the Barremian in Canada.

Tubotuberella sp.

Occurrence in East Greenland. Lower Barremian to upper Aptian. Sections 1, 7, 11, 13, 17 and 21.

Remarks. Specimens of *Tubotuberella* are very rare in the present material and are considered as reworked from pre-Hauterivian Cretaceous and Jurassic strata.

Genus Vesperopsis Bint, 1986 Vesperopsis? digitata (Duxbury, 1983) Bint, 1986

Plate 27, Fig. 11

Occurrence in East Greenland. Five very thin-walled, folded or damaged specimens were recorded from the middle Albian sections 20 and 23. All the specimens have the characteristic pre- and postcingular extensions on the lateral horns.

Previous occurrence. The type material was described from the upper Aptian, southern England by Duxbury (1983).

Vesperopsis aff. V. fragilis (Harding, 1986a) Harding, 1990 Plate 27, Figs 12–16

Comments. The specimens referred to *Vesperopsis* aff. *V. fragilis* differ from *V. fragilis* by their slightly longer, sometimes pointed, antapical horns, and by less distinctly developed cingulum and cingular horns (bulge).

Occurrence in East Greenland. Upper Albian. Sections 36, 37 and 39.

Previous occurrences. Vesperopsis fragilis was previously recorded from the upper Hauterivian, England (Harding, 1986a) and from presumed brackish-water deposits in the Barremian of south-east England, (Batten & Lister, 1988; Lister & Batten, 1988).

Remarks. The occurrence in East Greenland diverges remarkably from the previous records. *Vesperopsis* aff. *V. fragilis* may therefore be a new species.

Vesperopsis longicornis Batten & Lister, 1988; comb. nov. et emend. Harding, 1990 Plate 28, Figs 1-4

Comments. The specimens from East Greenland are generally larger than those described by Batten & Lister

- Fig. 1. Tanyosphaeridium boletum × 750, section 7, GGU 342081–4, 19.5–130.7; MGUH 22002.
- Fig. 2. Tanyosphaeridium boletum × 750, section 6, GGU 342111–7, 0.5–137.7; MGUH 22003.
- Fig. 3. Tanyosphaeridium boletum × 750, section 18, GGU 342220–4, 4.5–149.5; MGUH 22004.
- Fig. 4. Tanyosphaeridium cf. T. isocalamus × 750, section 25, GGU 346440–4, 17.4–135.0; MGUH 22005.
- Fig. 5. Tanyosphaeridium salpinx × 750, section 25, GGU 346440-4, 15.7-127.1; MGUH 22006.
- Fig. 6. *Tanyosphaeridium salpinx* × 750, section 25, GGU 346440–8, 12.2–133.7; MGUH 22007.
- Fig. 7. Tanyosphaeridium salpinx × 750, section 23, GGU 351676-4, 9.6-120.0; MGUH 22008.
- Fig. 8. *Trichodinium speetonense* × 500, section 17; GGU 342161–4, 17.8–130.6; MGUH 22009.
- Fig. 9. *Trichodinium speetonense* × 500, section 14; GGU 342132–4, 15.0–142.8; MGUH 22010.
- Fig. 10. Tubotuberella uncinata × 500, section 9; GGU 342069–4, 5.6–147.8; MGUH 22011.
- Fig. 11. Vesperopsis? digitata × 500, section 20; GGU 342189–4, 16.5–126.8; MGUH 22012.
- Fig. 12. Vesperopsis aff. V. fragilis × 500, section 37; GGU 324649-4, 5.8-128.9; MGUH 22013.
- Fig. 13. Vesperopsis aff. V. fragilis × 500, section 37; GGU 324650–4, 5.8–136.2; MGUH 22014.
- Fig. 14. Vesperopsis aff. V. fragilis × 500, section 37; GGU 324655–3, 13.0–125.4; MGUH 22015.
- Fig. 15. Vesperopsis aff. V. fragilis × 500, section 37; GGU 324648-4, 2.8-149.8; MGUH 22016.
- Fig. 16. Vesperopsis aff. V. fragilis × 500, section 37; GGU 324648-4, 7.2–141.0; MGUH 22017.

(1988) and Harding (1990b). The right antapical horn varies from being rather short (Plate 28, figs 1-3) to a length almost as long as the left antapical horn (Plate 28, Fig. 4).

Dimensions. (Measurements in μ .) Length, 9 complete specimens: 85 (141) 193, width 65 (106) 170, 21 specimens, length, 30 excysted specimens 71 (93) 114.

Occurrence in East Greenland. Lower Aptian. Sections 3, 6, 17, 19 and 32, where it has an acme with a rather narrow interval. A second acme occurs in a narrow interval in the upper Aptian – lower? Albian. Sections 2, 13, 26 and 34.

Previous occurrences. Vesperopsis longicornis was previously recorded from the uppermost Barremian, southeast England, as Australisphaera sp. A (Lister & Batten, 1988), and upper Barremian to lower Aptian at the Warlingham borehole, England (Harding, 1990b).

Vesperopsis mayi Bint, 1986 Plate 28, Figs 5-10

Description. The specimens here identified as V. mayi have an apical, two lateral and two antapical horns as described by Bint (1986, p. 157).

The lateral horns on most of the observed specimens differ slightly from those on the holotype by tapering more gradually to the tip. They are almost equal in length but differ slightly in shape. The left lateral horn has a clear cingular indentation, often more pronounced than on the holotype, whereas the cingular indentation is vague on the right lateral horn. The left antapical horn is long and narrow whereas the right antapical horn is short, often less than a third of the length of the left antapical horn, but never absent as mentioned by Bint (1986, p. 157). The archeopyle is apical with the operculum usually in place. The cysts are composed of one wall layer.

Remarks. According to Bint (1986, p. 157) *Muderongia* asymmetrica Brideaux, 1977 is very similar to *V. mayi* but differs by having an inner body, a free apical operculum, and a right postcingular horn which is longer than the left postcingular horn. The same data can be obtained from Brideaux's (1977, p. 40) description of the species and Monteil's (1991) emendation.

The holotype of *M. asymmetrica* has been re-examined by the present author. This and a closer look at Brideaux's illustrations of the holotype (1977, plate 15, fig. 9 and plate 16, fig. 1) reveal that the specimen has folded postcingular horns of almost equal lengths and no free apical operculum. Furthermore the inner body is, according to the present author, very difficult to distinguish.

The most obvious difference between the two species, apart from the questionable presence of an inner body, may be the length of the right antapical horn, which is very small or absent on *V. mayi*, whereas it is more pronounced on the holotype of *M. asymmetrica*.

Occurrence in East Greenland. Lower Aptian to middle upper Albian. The species is common to abundant in the lower and middle Albian. Sections 2, 5, 12, 13, 17, 20, 21, 22, 23, 26, 30, 31, 34 and 40.

Previous occurrences. Vesperopsis mayi was previously recorded from the Albian, Western Interior, USA (Bint, 1986, type material) and middle to upper Albian, Alaska (as *Muderongia* sp. A, May & Stein, 1979).

Genus Wallodinium Loeblich & Loeblich, 1968 Wallodinium krutzschii (Alberti, 1961) Habib, 1972 Plate 29, Fig. 1

Occurrence in East Greenland. Lower Barremian to upper Albian. Sections 1, 3, 6, 7, 8, 11, 12, 14, 17, 18, 19, 20, 21, 22, 23, 26, 30, 31, 32, 33, 34 and 40.

Plate 28

- Fig. 1. Vesperopsis longicornis × 500, section 34; GGU 342556–4, 20.3–132.8; MGUH 22018.
- Fig. 2. Vesperopsis longicornis × 500, section 34; GGU 324556-4, 12.3-153.4; MGUH 22019.
- Fig. 3. Vesperopsis longicornis × 500, section 17; GGU 342169–4, 13.8–124.1; MGUH 22020.
- Fig. 4. Vesperopsis longicornis × 500, section 17; GGU 342169–4, 13.9–149.2; MGUH 22021.
- Fig. 5. Vesperopsis mayi × 500, section 30; GGU 324613-8, 19.1-139.1; MGUH 22022.
- Fig. 6. Vesperopsis mayi × 500, section 26; GGU 351630-4, 14.0-122.5; MGUH 22023.
- Fig. 7. Vesperopsis mayi × 500, section 30; GGU 324619–6, 8.8–126.9; MGUH 22024.
- Fig. 8. Vesperopsis mayi × 500, section 20; GGU 342189-4, 16.7–126.0; MGUH 22025.
- Fig. 9. Vesperopsis mayi × 500, section 20; GGU 342179-4, 3.8-122.8; MGUH 22026.
- Fig. 10. Vesperopsis mayi × 500, section 13; GGU 351587-4, 10.8–135.3; MGUH 22027.

Previous occurrences. Wallodinium krutzschii was previously recorded from the Hauterivian and Barremian, Germany (Alberti, 1961, type material) and the lower Hauterivian to upper Turonian, north-west Germany (Prössl, 1990).

Wallodinium luna (Cookson & Eisenack, 1960a) Lentin & Wiliams, 1973 Plate 29, Fig. 2

Occurrence in East Greenland. Lower Barremian to upper Albian. Sections 9, 10, 15, 25, 28, 31, 34 and 36.

Previous occurrences. Wallodinium luna was previously recorded from the upper? Albian to Cenomanian, Australia (Cookson & Eisenack, 1960a, type material), the lower Hauterivian to upper Turonian, north-west Germany (Prössl, 1990) and from Berriasian to Campanian, world-wide (Williams & Bujak, 1985).

Genus Wigginsiella Lucas-Clark, 1987 Wigginsiella grandstandica Lucas-Clark, 1987 Plate 29, Figs 3-5

Occurrence in East Greenland. In a rather narrow interval in the lower upper Albian. Sections 29, 30 and 31.

Previous occurrences. Wigginsiella grandstandica was previously recorded as Genus A from the upper Albian, Alaska (May & Stein, 1979; May, 1979). In the description of the type material Lucas-Clark (1987, p. 162) referred to oral communication with J. Bennett, H. Haga, F. E. May and V. D. Wiggins (1982–1984) who employed the species as an upper Albian marker in Alaska. The present observations from East Greenland agree well with the previous occurrences.

Genus *Xenascus* Cookson & Eisenack, 1969; emend. Stover & Helby, 1987a *Xenascus ceratioides* (Deflandre, 1937b) Lentin & Williams, 1973 Plate 29, Figs 6-8

Comments. The few specimens observed in the present study are poorly preserved. No attempt has, therefore been made to distinguish between the different subspecies.

Occurrence in East Greenland. Uppermost Albian. Sections 24, 25, 27, 30, 39 and 40.

Previous occurrences. Xenascus ceratioides was previously recorded from the uppermost Albian to upper Turonian, north-west Germany (Prössl, 1990), lower Albian to Campanian, France (Foucher, 1979; 1981), the lower Albian to upper Maastrichtian, England and the North Sea (Costa & Davey, 1992), uppermost Albian and younger strata, offshore eastern Canada (Bujak & Williams, 1978), offshore eastern Canada (Williams, 1975) and upper middle Albian to lowermost Maastrichtian, worldwide (Williams & Bujak, 1985).

Genus Xiphophoridium Sarjeant, 1966b Xiphophoridium alatum (Cookson & Eisenack, 1962b) Sarjeant, 1966b Plate 29, Fig. 9

Occurrence in East Greenland. Upper Albian. Sections 24, 25, 27, 28, 30, 31, 36, 37, 38, 39 and 40.

Previous occurrences. Xiphophoridium alatum was previously recorded from the upper Albian to lower Santonian, England and the North Sea (Costa & Davey, 1992), the upper middle Albian to the middle upper Turonian, north-west Germany (Prössl, 1990), middle Albian to upper Santonian, France; Campanian and Maastrichtian, Belgium (Foucher, 1979; 1981), Albian (upper?) and Cenomanian, Australia (Cookson & Eisenack, 1962b,

Plate 29

- Fig. 1. Wallodinium krutzschii × 500, section 7; GGU 342084-4, 4.4-143.6; MGUH 22028.
- Fig. 2. Wallodinium luna × 500, section 15; GGU 351526-4, 16.4-138.5; MGUH 22029.
- Figs 3 & 4. Wigginsiella grandstandica × 500, section 29; GGU 324599–4, 3.5–124.9; MGUH 22030.
- Fig. 5. Wigginsiella grandstandica × 500, section 31; GGU 324623–8, 2.3–124.4; MGUH 22031.
- Fig. 6. Xenascus ceratioides × 500, section 30; GGU 324617–8, 21.9–134.0; MGUH 22032.
- Fig. 7. Xenascus ceratioides × 500, operculum, section 30; GGU 324617–8; MGUH 22033.
- Fig. 8. Xenascus ceratioides × 500, section 39; GGU 335320-4, 0.8–150.5; MGUH 22034.
- Fig. 9. Xiphophoridium alatum × 500, section 30; GGU 324613–8, 13.4–142.0; MGUH 22035.
- Fig. 10. Pterospermella cf. P. australiensis × 500, section 20; GGU 342179-4, 17.1-129.0; MGUH 22036.
- Fig. 11. ?Hair from leaf × 500, section 17; GGU 342162-4, 4.7-128.3; MGUH 22037.
- Fig. 12. Dinoflagellate cyst 1 × 500, section 31; GGU 324623–4, 23.0–119.6; MGUH 22038.

type material) and upper Albian to upper Santonian, world-wide (Williams & Bujak, 1985).

Dinoflagellate cyst 1 Plate 29, Fig. 12

Description. Dinoflagellate cyst 1 is a relatively small (total length 68 μ , width 64 μ), lenticular to spherical cyst with an apparently cingular flange (width of flange 15–18 μ) with slender spines/processes (length of processes 5–10 μ) that bi- or trifurcate distally. The flange is continuous, except for a narrow interval, which could be a sulcal area. The specimens are observed in a presumed polar view and the main body of the cyst is then ovoidal in outline and without any ornamentation. Fractures along the base of the flange from the dorsal to the one lateral side may indicate a precingular archeopyle (type P?). There is no clear orientation of the cysts except for the flange and the questionable archeopyle.

Occurrence in East Greenland. Only a few specimens have been observed from the upper Albian section 31.

Dinoflagellate cyst 2 Plate 30, Fig. 1

Description. Dinoflagellate cyst 2 is a large (length 213 μ), probably cavate, elongate, thin walled cyst with a smooth ectophragm surface. The epicyst is conical with a cylindric apical horn (35 μ) and a precingular acheopyle (type P?). A cingulum may be distinguished as a equatorial traverse furrow. The hypocyst is slightly folded but gradually tapered and may antapical terminate in a square or round aperture (opisthopyle?) as in the genus *Tubotuberella*.

Occurrence in East Greenland. Only one specimen has been observed from the upper Albian of section 30.

Dinoflagellate cyst 3 Plate 30, Figs 2 & 3

Description. Dinoflagellate cyst 3 is a small chorate cyst (overall size 45 μ , width of body 29 μ) with a densely scabrate to granulate surface. The processes arise from the surface of the main body and are arranged in circles (most probably plate related; intratabular). Each circle is composed of six to eight cylindrical to slightly tapering processes that often join distally like the poles in a teepee. The archeopyle is apical (type tA) and the operculum is attached.

Occurrence in East Greenland. Only one specimen has been observed from the lower Aptian part of section 17.

Dinoflagellate cyst 4 Plate 30, Figs 4 & 5

Description. Dinoflagellate cyst 4 is a relatively small (central body 30 μ) chorate cyst with a rugulate surface. The processes are numerous (more than 50) and occur randomly. They are approximately 15 μ long, slightly tapering and multifurcate distally. The processes are proximally striate and the transition to the surface looks like the attachment of supporting roots. The archeopyle is apical but the precise type is not yet known.

Occurrence in East Greenland. Only one specimen has been observed from the lower Aptian part of section 17.

- Fig. 1. Dinoflagellate cyst 2 × 500, section 30; GGU 324617–8, 21.1–130.2; MGUH 22039.
- Fig. 2. Dinoflagellate cyst 3×800 , note that the apparently apical archeopyle is situated to the left on the illustration, section 17; GGU 342169; MGUH 22040.
- Fig. 3. Dinoflagellate cyst 3×1750 , same specimen as above, close-up illustrating the granulate cyst surface and the process complexes that fusionate distally.
- Fig. 4. Dinoflagellate cyst 4 \times 750, section 17; GGU 342169; 22041 .
- Fig. 5. Dinoflagellate cyst 4×1950 , same specimen as above, close-up illustrating the vertucate cyst surface and the processes that furcate distally.
- Fig. 6. *Plicatella insignis* × 500, section 30; GGU 324619-4, 19.8-124.2; MGUH 22042.
- Fig. 7. Costatoperforosporites sp. × 500, section 30; GGU 324610–3, 8.0–138.3; MGUH 22043.
- Fig. 8. Spore ? × 500, section 25; GGU 346440–5, 7.6–138.0; MGUH 22044.
- Fig. 9. ?Acanthotriletes varispinosus × 500, section 30; GGU 324619–6, 7.2–125.0; MGUH 22045.
- Fig. 10. Tythodiscus sp. × 500, section 30; GGU 324620–7, 18.1–152.0; MGUH 22046.
- Fig. 11. Plicatella concentrica × 500, section 30; GGU 324610–3, 11.5–148.9; MGUH 22047.
- Fig. 12. Aequitriradites ornatus × 500, section 30; GGU 324619–6, 10.5–154.1; MGUH 22048.
- Fig. 13. *Trilobosporites apiverrucatus* × 500, section 30; GGU 324610–3, 11.8–129.0; MGUH 22049.
- Fig. 14. Spore × 500, section 30; GGU 324619–6, 7.6–143.7; MGUH 22050.

Schizocystia spp. is shown separately on the range charts. The remaining acritarchs have been grouped as Acritarcha (undifferentiated).

Occurrence in East Greenland. Barremian to Albian. Acritarchs have been recorded from 24 of the 40 examined sections.

Genus *Leiofusa* Eisenack, 1938 *Leiofusa* sp. Plate 11, Fig. 9 Occurrence in East Greenland. In the middle to upper Albian. Sections 20, 23, 29, 30 and 31. The species often occurs in the lower part of the sections, but not consistently.

Genus Schizocystia Cookson & Eisenack, 1962a Schizocystia spp.

Occurrence in East Greenland. Barremian to Albian. Sections 17, 20, 23, 24, 30, 31 and 38.

Prasinophycean algae

Genus Pterospermella (W. Wetzel, 1952)
Pterospermella cf. P. australiensis
Deflandre & Cookson, 1955Genus Ulvella P. L. & H. M. Crouan, 1859
cf. Ulvella nannae Hansen, 1980
Plate 30, Fig. 10Plate 29, Fig. 10Occurrence in East Greenland. Barremian to Albian.
Sections 7, 21, 30 and 31 where the species is rare.

Miospores

Saccate pollen and trilete spores occur in very low numbers and have not been included in the range charts (Tables 1–40). Section 30 seems to have a slightly higher content of trilete spores than the rest of the sections. The following spore genera have kindly been identified by Eva B. Koppelhus from the middle upper Albian, section 30:

?Acanthotriletes varispinosus Pocock, 1962 Plate 30, Fig. 9

Aequitriradites ornatus Upshaw, 1963 Plate 30, Fig. 12 Genus Costatoperforosporites Deák, 1962 Costatoperforosporites sp. Plate 30, Fig. 7

Plicatella concentrica (Kemp, 1970) Davies, 1985 Plate 30, Fig. 11

Plicatella insignis (Markova, 1961) Davies, 1985 Plate 30, Fig. 6

Trilobosporites apiverrucatus Couper, 1958 Plate 30, Fig. 13

Miscellaneous

?Hair from leaf Plate 29, Fig. 11	Occurrence in East Greenland. Upper Barremian to lower Albian. Sections 6, 7, 14, 17 and 26 where it is very rare. This Incertae sedis has also been recorded from the
Comments. Small, miscellaneous hair-like elements of antler-like shape.	upper Barremian, South Sabine section, Melville Island, Arctic Canada (samples kindly provided to me from I.S.P.G., Calgary, Canada).

Acknowledgements

The author wishes to thank the Carlsberg Foundation for financial support (87-0310/20) which made the project possible. The Geological Survey of Greenland (GGU) is thanked for financing fieldwork in East Greenland during two summers and for providing office and laboratory facilities during the study. The Danish Research Academy is thanked for financial support to a half year stay at the Institute of Sedimentary and Petroleum Geology (I.S.P.G.), Geological Survey of Canada, Calgary, Canada. I.P.G.P. and its staff are thanked for the hospitality they showed me and for placing working facilities at my disposal during my stay in Canada.

The Geological Institute, University of Copenhagen (G.I., U.C.), is thanked for permission to use the scanning electron microscope.

Stefan Piasecki, Flemming Getreuer Christiansen, Lars Stemmerik, John Boserup (GGU), Jørgen Bojesen Koefoed and Poul Schiøler (GGU) are all thanked for their valuable help and company during the sampling and fieldwork.

Special thanks go to Stefan Piasecki (GGU) for many discussions during the work. Lucy I. Costa (Simon-Robertson, Llandudno, United Kingdom), Kaj Raunsgaard Pedersen (Geological Institute, University of Aarhus (A.U.)), David J. McIntyre (I.S.P.G., Calgary) and Hans Jørgen Hansen (G.I., U.C.) are thanked for discussions and suggestions to improve the manuscript.

Niels Århus (Enger, Norway), David Graham Bell (Stratlab a.s., Norway), Claus Heilmann-Clausen (A.U.) and Ian C. Harding (University of Southampton, England) are thanked for useful discussions concerning the occurrence of dinoflagellate cysts in the Barents Sea and Europe.

Eva Bundgaard Koppelhus (GGU) is thanked for the identification of the miospores.

The author is grateful to the staff at GGU of whom W. Stuart Watt undertook time-consuming and effective editing, Kim Villadsen prepared the samples, Jacob Lautrup and Jens Nymose prepared the photographs, Bodil Sikker Hansen, Jette Halskov and Gurli Ellis Hansen produced the figures and Vibber Hermansen, Nina Turner and Annette Printz typed the manuscript.

I am grateful to Roger J. Davey (Simon-Robertson, Llandudno, United Kingdom) and Claus Heilmann-Clausen (A.U.) for critically reviewing this manuscript and suggesting many improvements.

References

References to species in works not listed here are to be found in Lentin & Williams (1989).

- Århus, N. 1991: Dinoflagellate cyst stratigraphy of some Aptian and Albian sections from North Greenland, southeastern Spitsbergen and the Barents Sea. Cretaceous Research 12, 209–225.
- Århus, N., Kelly, S. R. A., Collins, J. S. H. & Sandy, M. R. 1990: Systematic palaeontology and biostratigraphy of two Early Cretaceous condensed sections from the Barents Sea. *Polar Research* 8, 165–194.
- Aarhus, N., Verdenius, J. & Birkelund, T. 1986: Biostratigraphy of a Lower Cretaceous section from Sklinnabanken, Norway, with some comments on the Andøya exposure. Norsk Geologisk Tidsskrift 66, 17–43.
- Alberti, G. 1959: Zur Kenntnis der Gattung Deflandrea Eisenack (Dinoflag.) in der Kreide und im Alttertiär Nord- und Mitteldeutschlands. Mitt. Geol. Staatsinst. Hamburg 28, 93– 105.
- Alberti, G. 1961: Zur Kenntnis mesozoischer und alttertiärer Dinoflagellaten und Hystrichosphaerideen von Nord- und Mitteldeutschland sowie einigen anderen europäischen Gebieten. Palaeontographica A 116, 1–58.
- Backhouse, J. 1988: Late Jurassic and Early Cretaceous palynology of the Perth Basin, Western Australia. Bull. Geol. Survey Western Australia 135, 233 pp.
- Banerjce, I. & Davies, E. H. 1988: An intergrated lithostratigraphic and palynostratigraphic study of the Ostracode Zone

and adjacent strata in the Edmonton Embayment, central Alberta. In James, D. P. & Leckie, D. A. (ed.) Sequences, stratigraphy, sedimentology: surface and subsurface. Can. Soc. Petrol. Geol. Mem. 15, 261–274.

- Batten, D. J. & Lister, J. K. 1988: Early Cretaceous dinoflagellate cysts and chlorococcalean algae from freshwater and low salinity palynofacies in the English Wealden. *Cretaceous Re*search 9, 337–367.
- Below, R. 1981: Dinoflagellaten-Zysten aus dem oberen Hauterive bis unteren Cenoman Süd West-Marokkos. *Palaeon*tographica B 176, 1–145.
- Below, R. 1982a: Scolochorate Zysten der Gonyaulacaceae (Dinophyceae) aus der Unterkreide Marokkos. *Palaeontographica* B 182, 1–51.
- Below, R. 1982b: Zur Kenntnis der Dinoflagellaten-Zysten-Populationen im Ober Apt der Tongrube 'Otto Gott' in Sarstedt/Norddeutschland. *Neues Jb. Geol. Paläont. Abh.* 164, 339–363.
- Berthou, P. Y. & Leereveld, H. 1990: Stratigraphic implications of palynological studies on Berriasian to Albian deposits from western and southern Portugal. *Rev. Palaeobot. Palynol.* 66, 313–344.
- Bint, A. N. 1986: Fossil Ceratiaceae: A restudy and new taxa from the mid-Cretaceous of the Western Interior, USA. *Paly*nology 10, 135–180.
- Birkelund, T. & Håkansson, E. 1983: The Cretaceous of North Greenland – a stratigraphic and biogeographical analysis. *Zitteliana* 10, 7–25.

- Bøgvad, R. & Rosenkrantz, A. 1934: Beiträge zur Kenntnis der unteren Kreide Ostgrönlands. Meddr Grønland 93(1), 28 pp.
- Brideaux, W. W. 1971: Palynology of the Lower Colorado Group central Alberta, Canada. I. Introduction remarks. Geology, and microplankton studies. *Palaeontographica* B 135, 53–114.
- Brideaux, W. W. 1976: Taxonomic notes and illustrations of selected dinoflagellate cyst species from the Gulf Mobil Parsons N-10 well. *Pap. Geol. Surv. Can.* **76–IB**, 251–257.
- Brideaux, W. W. 1977: Taxonomy of Upper Jurassic Lower Cretaceous microplankton from the Richardson Mountains, District of Mackenzie, Canada. Bull. Geol. Surv. Can. 281, 89 pp.
- Brideaux, W. W. & McIntyre, D. J. 1975: Miospores and microplankton from Aptian–Albian rocks along Horton River, District of Mackenzie. Bull. Geol. Surv. Can. 252, 85 pp.
- Brideaux, W. W. & Myhr, D. W. 1976: Lithostratigraphy and dinoflagellate cyst succession in the Gulf Mobil Parsons N-10 well, District of Mackenzie. *Pap. Geol. Surv. Can.* 76–1B, 235–249.
- Bujak, J. B., Davies, E. H., Fensome, R. A., Gradstein, F. M., Helenes, J. & Williams, G. L. 1989: Biostratigraphy data, selected wells. *In Bell*, J. S. (Co-ordinator) *Frontier Geoscience Program, East Coast Basin Atlas Series Labrador Sea*, 112 pp. Energy, Mines and Resources Canada, Atlantic Geoscience Centre Dartmounth, Nova Scotia, Canada, Geological Survey of Canada.
- Bujak, J. P. & Williams, G. L. 1978: Cretaceous palynostratigraphy of offshore southeastern Canada. Bull. Geol. Surv. Can. 297, 1–19.
- Burger, D. 1980: Early Cretaceous (Neocomian) microplankton from the Carpentaria Basin, northern Queensland. *Alcheringa* 4, 263–279.
- Callomon, J. H., Donovan, D. T. & Trümpy, R. 1972: An annotated map of the Permian and Mesozoic formations of East Greenland. *Meddr Grønland* 168(3), 36 pp.
- Chen, Yow-yuh, Harland, R., Stower, L. E. & Williams, G. L. 1988: Fossil dinoflagellate taxa by Chinese authors, 1978– 1984. Can. Tech. Rep. Hydrogr. Ocean Sci. 103, 40 pp.
- Clarke, R. F. A. & Verdier, J. P. 1967: An investigation of microplankton assemblages from the Chalk of the Isle of Wight, England. Verhandel. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk., (1) 24, 96 pp.
- Cookson, I. C. & Eisenack, A. 1958: Microplankton from Australian and New Guinea Upper Mesozoic sediments. *Proc. R. Soc. Victoria* 70, 19–79.
- Cookson, I. C. & Eisenack, A. 1960a: Microplankton from Australian Cretaceous sediments. *Micropaleontology* 6, 1–18.
- Cookson, I. C. & Eisenack, A. 1960b: Upper Mesozoic microplankton from Australia and New Guinea. *Palaeontology* 2, 243–261.
- Cookson, I. C. & Eisenack, A. 1962a: Some Cretaceous and Tertiary microfossils from Western Australia. Proc. R. Soc. Victoria 75, 269–273.
- Cookson, I. C. & Eisenack, A. 1962b: Additional microplankton from Australian Cretaceous sediments. *Micropaleontology* 8, 485–507.
- Cookson, I. C. & Hughes, N. F. 1964: Microplankton from the

Cambridge Greensand (mid-Cretaceous). Palaeontology 7, 37-59.

- Costa, L. I. 1981: Palyostratigraphy, Upper Jurassic to Lower Cretaceous in the wells 2/7-1 and 2/7-3. In Ofstad, K. (ed.) The Eldfisk area. Norweg. Petrol. Dir. Pap. 30, 34 pp. Norwegian Petroleum Directorate.
- Costa, L. I. & Davey, R. J. 1992: Dinoflagellate cysts of the Cretaceous System. In Powell, A. J. (ed.) A stratigraphic index of dinoflagellate cyst, 99-153. British Micropal. Soc.
- Couper, R. A. 1958: British Mesozoic microspores and pollen grains, a systematic and stratigraphic study. *Palaeontographica* B 103, 75–179.
- Crouan, P. L. & Crouan, H. M. 1859: Notice sur quelque espèces et genres nouvaux d'algues marines de la rade de Brest. Annls Sci. Nat. Bot. (4) 12, 288–292.
- Davey, R. J. 1969: Non-calcareous microplankton from the Cenomanian of England, northern France and North America. Part I. Bull. Brit. Mus. (Nat. Hist.) Geol. 17, 105–180.
- Davey, R. J. 1970: Non-Calcareous microplankton from the Cenomanian of England, northern France and North America. Part II. Bull. Brit. Mus. (Nat. Hist.) Geol. 18, 333–397.
- Davey, R. J. 1974: Dinoflagellate cysts from the Barremian of the Speeton Clay, England. In Symposium on stratigraphic palynology. Birbal Sahni Institute of Palaeobotany, Special Publication 3, 41–75.
- Davey, R. J. 1978: Marine Cretaceous palynology of Site 361, DSDP Leg 40, off southwestern Africa. In Bolli, H. M., Ryan, W. B. F. et al., Initial Reports of the Deep Sea Drilling Project 40, 883–913.
- Davey, R. J. 1979a: Marine Apto-Albian palynomorphs from Holes 400A and 402A, IPOD Leg 48, northern Bay of Biscay. In Montadert, L., Robert, D. G. et al., Initial Reports of the Deep Sea Drilling Project 48, 547–577.
- Davey, R. J. 1979b: The stratigraphic distribution of dinocysts in the Portlandian (latest Jurassic) to Barremian (Early Cretaceous) of northwest Europe. Am. Ass. strat. Palynol. Contr. Ser. 5B, 49–81.
- Davey, R. J. 1982a: Die Verbreitung der Palynomorphen im späten Apt und frühen Alb Nordwestdeutschland. Geol. Jb. A65, 365–403.
- Davey, R. J. 1982b: Dinocyst stratigraphy of the latest Jurassic to Early Cretaceous of the Haldager No. 1 borehole, Denmark. Geol. Surv. Denmark B, 6, 56 pp.
- Davey, R. J. 1988: Palynological zonation of the Lower Cretaceous, Upper and uppermost Middle Jurassic in the northwestern Papuan Basin of Papua, New Guinea. *Mem. Geol. Surv. Papua New Guinea* 13, 77 pp.
- Davey, R. J. & Verdier, J.-P. 1971: An investigation of microplankton assemblages from the Albian of the Paris basin. *Verhandel. Koninkl. Ned. Akad. Wetenschap.*, Afdel. Natuurk. (1) 26, 58 pp.
- Davey, R. J. & Verdier, J. P. 1973: An investigation of microplankton assemblages from latest Albian (Vraconian) sediments. *Revista Española de Micropaleontologia* 5, 173–212.
- Davey, R. J. & Verdier, J.-P. 1974: Dinoflagellate cysts from the Aptian type sections at Gargas and La Bédoule, France. *Pa-laeontology* 17, 623–653.

Davey, R. J. & Williams, G. L. 1966a: The genera Hystrichos-

phaera and Achomosphaera. In Davey, R. J., Downie, C., Sarjeant, W. A. S. & Williams, G. L. Studies on Mesozoic and Cainozoic dinoflagellate cysts. Bull. Brit. Mus. (Nat. Hist.) Geol. Suppl. 3, 28–52.

to be because and contracting to be a second to the

- Davey, R. J. & Williams, G. L. 1966b: The genus Hystrichosphaeridium and its allies. In Davey, R. J., Downie, C., Sarjeant, W. A. S. & Williams, G. L., Studies on Mesozoic and Cainozoic dinoflagellate cysts. Bull. Brit. Mus. (Nat. Hist.) Geol. Suppl. 3, 53–106.
- Davey, R. J., Downie, C., Sarjeant, W. A. S. & Williams, G. L. 1966: Fossil dinoflagellate cysts attributed to *Baltisphaeridium. In* Davey, R. J., Downie, C., Sarjeant, W. A. S. & Williams, G. L. Studies on Mesozoic and Cainozoic dinoflagellate cysts. *Bull. Brit. Mus. (Nat. Hist.) Geol.* Suppl. 3, 157–175.
- Davies, E. H. 1985: The Anemiacean Schizaeacean and related spores: An index to genera and species. Can. Tech. Rep. Hydrogr. Ocean Sci. 67.
- Deák, M. H. 1962: Deux nouveaux genres de spore de la série d'argiles et de marnes aptiennes. Földtani. Közlöny, Budapest 92, 230–235.
- Deflandre, G. 1935: Considérations biologiques sur les microorganismes d'origine planctonique conservés dans les silex de la craie. Bull. biol. France et Belgique 69, 213–244.
- Deflandre, G. & Cookson, I. C. 1955: Fossil microplankton from Australian Late Mesozoic and Tertiary sediments. Australian J. Mar. Freshwater Res. 6, 242–313.
- Deflandre, G. & Courteville, H. 1939: Note préliminaire sur les microfossiles des silex crétacés du Cambrésis. Bull. Soc. franç. Microscopie 8, 95–106.
- Dixon, J., McNeil, D. H., Dietrich, J. R. & McIntyre, D. J. 1989: Barremian to Albian stratigraphy, Tuktoyaktuk Peninsula and South Mackenzie Delta, Northwest Territories. *Pap. Geol. Surv. Can.* 89–15, 16 pp.
- Doerenkamp, A., Jardine, S. & Moreau, P. 1976: Cretaceous and Tertiary palynomorph assemblages from Banks Island and adjacent areas (N. W. T.). Bull. Can. Petrol. Geol. 24, 372– 417.
- Donovan, D. T. 1949: Observations on the Mesozoic rocks of Geographical Society Ø, East Greenland. Meddr Grønland 149(5), 13 pp.
- Donovan, D. T. 1953: The Jurassic and Cretaceous stratigraphy and palaeontology of Traill Ø, East Greenland. *Meddr Grønland* 111(4), 150 pp.
- Donovan, D. T. 1955: The stratigraphy of the Jurassic and Cretaceous rocks of Geographical Society Ø, East Greenland. *Meddr Grønland* 103(9), 60 pp.
- Donovan, D. T. 1957: The Jurassic and Cretaceous Systems in East Greenland. *Meddr Grønland* 155(4), 214 pp.
- Donovan, D. T. 1972: Cretaceous system. In Callomon, J. H., Donovan, D. T. & Trümpy, R. (ed.) An annotated map of the Permian and Mesozoic formations of East Greenland. Meddr Grønland 168(3), 21–24.
- Dörhöfer, G. & Davies, E. H. 1980: Evolution of archeopyle and tabulation in Rhaetogonyaulacian dinoflagellate cysts. Roy. Ont. Museum, Life Sci. Misc. Publs, 91 pp.
- Duxbury, S. 1977: A palynostratigraphy of the Berriasian to

Barremian of the Speeton Clay of Speeton, England. Palaeontographica B 160, 17-67.

- Duxbury, S. 1980: Barremian phytoplankton from Speeton, East Yorkshire. Palaeontographica B 173, 107–146.
- Duxbury, S. 1983: A study of dinoflagellate cysts and acritarchs from the Lower Greensand (Aptian to Lower Albian) of the Isle of Wright, southern England. *Palaeontographica* B 186, 18–80.
- Eisenack, A. 1938: Hystrichosphaerideen und verwandte Formen in baltischen Silur. Z. Geschiebef. 14, 1–30.
- Eisenack, A. 1958: Mikroplankton aus dem norddeutschen Apt. Neues Jb. Geol. Paläont., Abh. 106, 383-422.
- Eisenack, A. & Cookson, I. C. 1960: Microplankton from Australian Lower Cretaceous sediments. *Proc. R. Soc. Victoria* 72, 1–11.
- Evitt, W. R. 1963: A discussion and proposals concerning fossil dinoflagellates, hystrichospheres and acritarchs, I and II. *Proc. Natl Acad. Sci. Wash.* 49, 158–164; 298–302.
- Evitt, W. R. 1975: Introduction to the proceedings. In Evitt, W. R. Am. Ass. strat. Palynol. Contr. Ser. 4, 1–3.
- Evitt, E. R. 1985: Sporopollenin dinoflagellate cyst: Their morphology and interpretation. Am. Ass. strat. Palynol. Foundation, 333 pp. Austin, Texas: Hart Graphics Inc.
- Fensome, R. A. 1979: Dinoflagellate cysts and acritarchs from the Middle and Upper Jurassic of Jameson Land, East Greenland. Bull. Grønlands geol. Unders. 132, 98 pp.
- Foucher, J.-C. 1979: Distribution stratigraphique des kystes de dinoflagellés et des acritarches dans le Crétacé Supérieur du Basin de Paris et de l'Europe septentrionale. *Palaeontographica* B 169, 78–105.
- Foucher, J.-C. 1981: Kystes de Dinoflagellés du Crétacé Moyen Européen: Proposition d'une Eschelle Biostratigraphique pour le Domaine Nordoccidental. Cretaceous Research 2, 331–338.
- Foucher, J.-C. 1982: Les dinokystes Cenomano Turoniens du Saumurois et de Touraine (Bassin de Paris, France). Abstract of the Poster Session from the Joint meeting of Commission Internationale de Microflore du Paléozoique and American Association of Stratigraphic Palynologists, Dublin 1982, 19 pp.
- Frebold, H. 1934: Obere Kreide in Ostgrönland. Meddr Grønland 94(1), 81 pp.
- Frebold, H. 1935: Marines Aptien von der Koldewey Insel (Nordliches Ostgrönland). Meddr Grønland 95(4), 1–112.
- Gocht, H. 1957: Mikroplankton aus dem nordwestdeutschen Neokom (Teil I). Paläont. Z. 31, 163–185.
- Gocht, H. 1959: Mikroplankton aus dem nordwestdeutschen Neokom (Teil II). Paläont. Z. 33, 50–89.
- Håkansson, E., Birkelund, T., Piasecki, S. & Zakharov, V. 1981: Jurassic – Cretaceous boundary of the extreme Arctic (Peary Land, North Greenland). *Bull. geol. Soc. Denmark* 30, 11–42.
- Hansen, J. M. 1980: Morphological characterization of encrusting, palynomorph green algae from the Cretaceous – Tertiary of central West Greenland and Denmark. *Grana* 19, 67–77.
- Hansen, J. M. & Gudmundsson, L. 1978: A method for separation of acid insoluble microfossils from organic debris. *Micropalaeontology* 25, 113–117.
- Haq, B. U., Hardenbol, J. & Vail, P. R. 1987: Chronology of

fluctuating sea levels since the Triassic. Science, N.Y. 235, 1156-1166.

- Harding, I. C. 1986: An Early Cretaceous dinocyst assemblage from the Wealden of southern England. Spec. Pap. Palaeontology 35, 95–109.
- Harding, I. C. 1990a: Palaeoperidinium cretaceum: A brackishwater peridiniinean dinoflagellate from the early Cretaceous. Palaeontology 33, 35–48.
- Harding, I. C. 1990b: A dinocyst calibration of the European Boreal Barremian. *Palaeontographica* B 218, 1–76.
- Harland, W. B., Amstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G. & Smith, D. G. 1990: A geologic time scale 1989, 263 pp. Cambridge University Press.
- Heilmann-Clausen, C. 1987: Lower Cretaceous dinoflagellate biostratigraphy in the Danish Central Trough. *Geol. Surv. Denmark* A, 17, 89 pp.
- Helby, R. 1987: *Muderongia* and related dinoflagellates of the latest Jurassic to Early Cretaceous of Australia. In Jell, P. A. (ed.) Studies in Australian Mesozoic palynology. Ass. Australian Palaeontologists Mem. 4, 297–336.
- Helby, R., Morgan, R. & Partridge, A. D. 1987: A palynological zonation of the Australian Mesozoic. In Jell, P. A. (ed.) Studies in Australian Mesozoic palynology. Ass. Australian Palaeontologist Mem. 4, 1–94.
- Helenes, J. 1984: Morphological analysis of Mesozoic–Cenozoic Cribroperidinium (Dinophyceae), and taxonomic implications. Palynology 8, 107–137.
- Hoch, E., Hamberg, L., Schiøler, P. & Bojesen-Koefed, J. A. (in press): Fossils in the Cretaceous – lowermost Tertiary syn-rift deposits of Kangerdlugssuaq area, East Greenland. *Newsletters on Stratigraphy.*
- Ingram, B. S. 1968: Stratigraphic palynology of Cretaceous rocks from bores in Eucla Basin, Western Australia. Department of Mines, Western Australia, Annual Report for 1967, 102–105.
- Jain, K. P. 1977: Additional dinoflagellates and acritarchs from Grey Shale Member of Dalmiapuram Formation, South India. *Palaeobotanist* 24, 170–194.
- Jain, K. P. & Millepied, P. 1973: Cretaceous microplankton from Senegal Basin, N. W. Africa. 1. Some new genera species and combinations of dinoflagellates. *Palaeobotanist* 20, 22–32.
- Jansonius, J. 1986: Re-examination of Mesozoic Canadian dinoflagellate cysts published by S. A. J. Pocock (1962, 1972). *Palynology* 10, 201–223.
- Jansonius, J. 1989: The species of Fromea (fossil dinoflagellates). Rev. Palaeobot. Palynol. 61, 63–68.
- Kemp, E. M. 1970: Aptian and Albian miospores from southern England. *Palaeontographica* B 131, 73–143.
- Kemper, E., Rawson, P. F. & Thieuloy, J.-P. 1981: Ammonites of Tethyan ancestry in the early Lower Cretaceous of northwest Europe. *Palaeontology* 24, 34–47.
- Koch, L. 1929a: The geology of East Greenland. Meddr Grønland 73(2), 1–204.
- Koch, L. 1929b: Stratigraphy of Greenland. Meddr Grønland 73(2), 205–320.
- Koch, L. 1931: Carboniferous and Triassic stratigraphy of East Greenland. *Meddr Grønland* 83(2), 100 pp.

- Koch, L. & Haller, J. 1971: Geological map of East Greenland 72°-76°N. Lat (1:250,000). *Meddr Grønland* 183, 26 pp.
- Kofoid, C. A., 1907: The plates of *Ceratium* with a note on the unity of the genus. *Zoolog Anzeiger* 32, 177–183.
- Kofoid, C. A. 1909: On *Peridinium steini* Jörgensen, with a note on the nomenclature of the skeleton of the Peridiniae. *Archiv Protistenkunde* 16, 25–47.
- Lentin, J. K. & Vozzhennikova, T. F. 1990: Fossil dinoflagellates from the Jurassic, Cretaceous and Paleogene deposits of the USSR – a re-study. Am. Ass. strat. Palynol. Contr. Ser. 23, 211 pp.
- Lentin, J. K. & Williams, G. L. 1973: Fossil dinoflagellates: index to genera and species. *Pap. Geol. Surv. Can.* 73–42, 176 pp.
- Lentin, J. K. & Williams, G. L. 1989: Fossil dinoflagellates: index to genera and species 1989 edition. Am. Ass. strat. Palynol. Contr. Ser. 20, 473 pp.
- Lister, J. K. & Batten, D. J. 1988: Stratigraphic and palaeoenvironmental distribution of Early Cretaceous dinoflagellate cysts in the Hurlands Farm Borehole, West Sussex, England. *Palaeontographica* B 210, 9–89.
- Lucas-Clark, J. 1987: Wigginsiella n.gen., Spongodinium, and Apteodinium as members of the Aptiana-Ventriosum complex (fossil Dinophyceae). Palynology 11, 155-184.
- Manum, S. & Cookson, I. C. 1964: Cretaceous microplankton in a sample from Graham Island, Arctic Canada, collected during the second 'Fram'-Expedition (1898–1902). With notes on microplankton from the Hassel Formation, Ellef Ringnes Island. Skrifter Norske Videnskaps-Akademi Oslo, I Mat-Naturv. Klasse, Ny Serie 17, 35 pp.
- Marcussen, C., Christiansen, F. G., Larsen, P.-H., Olsen, H., Piasecki, S., Stemmerik, L., Bojesen-Koefoed, J., Jepsen, H. F. & Nøhr-Hansen, H. 1987: Studies of the onshore hydrocarbon potential in East Greenland 1986–87: field work from 72° to 74°N. *Rapp. Grønlands geol Unders.* 135, 72–81.
- Marcussen, C., Larsen, P.-H., Nøhr-Hansen, H., Olsen, H., Piasecki, S. & Stemmerik, L. 1988: Studies of the onshore hydrocarbon potential in East Greenland 1986–87: field work from 73° to 76°N. *Rapp. Grønlands geol. Unders.* 140, 89–95.
- Markova, L. T. 1961: In Samoilovitch, S. R. & Mtchedlischvilli, N. D. (ed.) [Pollen and spores of Western Siberia, Jurassic to Paleocene]. Trudy Vsesoyuznyi Nauchno-issledovatelskii Geolicheskii Institut Leningrad 177, 657 only (in Russian).
- May, F. E. 1979: Dinoflagellate and acritarch assemblages from the Nanushuk Group (Albian–Cenomanian) and the Torok Formation (Albian) Umiat test well 11, National Petroleum Reserve in Alaska, Northern Alaska. [U.S.] Geol. Surv. Cir. 794, 113–127.
- May, F. E. & Stein, J. A. 1979: Dinoflagellate and acritarch assemblages from the Grandstand Formation (Middle to Upper Albian) of the Nanushuk Group, Simpson core Test 25, National Petroleum Reserve in Alaska, Northern Alaska. [U.S.] Geol. Surv. Cir. 794, 128–145.
- Maync, W. 1949: The Cretaceous beds between Kuhn Island and Cape Franklin (Gauss Peninsula), northern East Greenland. *Meddr Grønland* 133(3), 291 pp.

- McIntyre, D. J. 1974: Palynology of an Upper Cretaceous section, Horton River, District of Mackenzie, N. W. T. Pap. Geol. Surv. Can. 74–14, 56 pp.
- McIntyre, D. J. & Brideaux, W. W. 1980: Valanginian miospore and microplankton assemblages from the northern Richardson Mountains, District of Mackenzie, Canada. *Bull. Geol. Surv. Can.* 320, 57 pp.
- Mellon, G. B. 1967: Stratigraphy and petrology of the lower Cretaceous Blairmore and Mannville Groups, Alberta foothills and plains. Bull. Alberta Res. Coun. 28, 270 pp.
- Mellon, G. B. & Wall, J. H. 1963: Correlation of the Blairmore Group and equivalent strata. Bull. Can. Petrol. Geol. 11, 396–409.
- Millioud, M. E. 1969: Dinoflagellates and acritarchs from some western European Lower Cretaceous type localities. In Bronnimann, P. & Renz, H. H. (ed.) Proceedings First International Conference Planktonic Microfossils Geneva 1967, 2, 420–454. Leiden: E. J. Brill.
- Millioud, E. M., Williams, G. L. & Lentin, J. K. 1975: Stratigraphic range charts; selected Cretaceous dinoflagellates. In Evitt, W. R. Am. Ass. strat. Palynol. Contr. Ser. 4, 65–72.
- Monteil, E. 1991: Morhpology and systematics of the Ceratioid group: a new morphographic approach. Revision and emendation of the genus *Muderongia* Cookson & Eisenack 1958. *Bull. Centres Rech. Explor.-prod. Elf-Aquitaine* 15, 461–505.
- Morgan, R. 1975: Some Early Cretaceous organic-walled microplankton from Great Australian Basin, Australia. J. Proc. R. Soc. New South Wales 8, 157–167.
- Morgan, R. 1980: Palynostratigraphy of the Australian Early and middle Cretaceous. *Mem. Geol. Surv. New South Wales Palaeont.* 18, 153 pp.
- Mutterlose, J. 1983: Phylogenie und Biostratigraphie der Unterfamilie Oxyteuthinae (Belemnitida) aus dem Barrême (Unter-Kreide) NW Europas. Palaeontographca A 180, 1–90.
- Mutterlose, J. 1984: Die Unterkreide-Aufschlüsse (Valangin-Alb) im Raum Hannover-Braunschweig. Mitt. Geol. Inst. Univ. Hannover 24, 61 pp.
- Mutterlose, J. & Harding, I. C. 1987a: Phytoplankton from the anoxic sediments of the Barremian (Lower Cretaceous) of N. W. Germany. Abh. Geol. B.-A. 39, 177–215. Vienna.
- Mutterlose, J. & Harding, I. C. 1987b: The Barremian Blätterton: an anoxic warm water sediment of the Lower Saxony Basin. *Geol. Jb.* A96, 187–207.
- Neale, J. W. & Sarjeant, W. A. S. 1962: Microplankton from the Speeton Clay of Yorkshire. *Geol. Mag.* 99, 439–458.
- Nichols, D. J. & Jacobson, S. R. 1982: Palynostratigraphic framework for the Cretaceous (Albian-Maestrichtian) of the overthrust belt of Utah and Wyoming. *Palynology* 6, 119– 147.
- North American Commission on Stratigraphic Nomenclature, 1983: North American Stratigraphic Code. Am. Ass. Petrol. Geol. Bull. 67, 841–875.
- Norvick, M. S. & Burger, D. 1976: Palynology of the Cenomanian of Bathurst Island, Northern Territory, Australia. Bull. [Australian] Bureau of Mineral Resources, Geology and Geophysics 151, 169 pp.
- Ofstad, K. 1983: Geology of the southernmost part of the Nor-

wegian section of the Central Trough. Norweg. Petrol. Dir. Pap. 32, 39 pp.

- Piasecki, S. 1979: Hauterivian dinoflagellate cysts from Milne Land, East Greenland. Bull. geol. Soc. Denmark 28, 31–37.
- Pocock, S. A. J. 1962: Microfloral analysis and age determination of strata at the Jurassic–Cretaceous boundary in the western Canada plains. *Palaeontographica* B 111, 1–95.
- Pocock, S. A. J. 1976: A preliminary dinoflagellate zonation of the uppermost Jurassic and lower part of the Cretaceous, Canadian Arctic, and possible correlation in the Western Canada Basin. *Geoscience and Man* 15, 101–114.
- Prössl, K. F. 1990: Dinoflagellaten der Kreide Unter-Hauterive bis Ober-Turon – im Niedersächsischen Becken. Stratigraphie und Fazies in der Kernbohrung Kontad 101 sowie einiger anderer Bohrungen in Nordwestdeutschland. *Palaeontographica* B 218, 93–191.
- Ravn, J. P. J. 1911: On Jurassic and Cretaceous fossils from North-East Greenland. *Meddr Grønland* 45(10), 437–500.
- Rawson, P. F. & Mutterlose, J. 1983: Stratigraphy of the Lower Band basal Cement Beds (Barremian) of the Speeton Clay, Yorkshire, England. Proc. Geol. Ass. 94, 133–146.
- Rawson, P. F. & Riley, L. A. 1982: Latest Jurassic Early Cretaceous events and the 'Late Cimmerian Unconformity' in North Sea area. Bull. Am. Ass. Petrol. Geol. 66, 2628–2648.
- Rawson, P. F., Curry, D., Dilley, F. C. et al. 1978: A correlation of Cretaceous rocks in the British Isles. Geol. Soc. Lond. Special Report 9, 70 pp.
- Riley, L. A. & Fenton, J. P. G. 1984: Palynostratigraphy of the Berriasian to Cenomanian sequence at Deep Sea Drilling Project Site 535, Leg. 77, southeastern Gulf of Mexico. In Buffler, R. T., Schlager, W. et al., Initial Reports of the Deep Sea Drilling Project 77, 675–690.
- Rosenkrantz, A. 1934: The Lower Jurassic rocks of East Greenland. Part I. Meddr Grønland 110(1), 122 pp.
- Sarjeant, W. A. S. 1966a: Dinoflagellate cysts with Gonyaulax type tabulation. In Davey, R. J., Downie, C., Sarjeant, W. A. S. & Williams, G. L. Studies on Mesozoic and Cainozoic dinoflagellate cysts. Bull. Brit. Mus. (Nat. Hist.) Geol. Suppl. 3, 107–156.
- Sarjeant, W. A. S. 1966b: Further dinoflagellate cysts from the Speeton Clay. *In* Davey, R. J., Downie, C., Sarjeant, W. A. S. & Williams, G. L. Studies on Mesozoic and Cainozoic dinoflagellate cysts. *Bull. Brit. Mus. (Nat. Hist.) geol.* Suppl. 3, 199–214.
- Sarjeant, W. A. S. 1968: Microplankton from the Upper Callovian and Lower Oxfordian of Normandy. *Revue de Micropa-léontologie* 10, 221–242.
- Scott, R. W. 1977: Early Cretaceous environments and palaeocommunities in the southern Western Interior. *In* Kauffman, E. G. (ed.) Cretaceous facies, faunas and palaeoenvironments across the Western Interior Basin. *Mountain Geologist* 14, 155–173.
- Singh, Ch. 1964: Microflora of the Lower Cretaceous Mannville Group, east-central Alberta. Bull. Alberta Res. Coun. 15, 239 pp.
- Singh, Ch. 1971: Lower Cretaceous microfloras of the Peace River area, northwestern Alberta. Bull. Alberta Res. Coun. 28, 301 pp.

- Singh, Ch. 1983: Cenomanian microfloras of the Peace River area, northwestern Alberta. Bull. Alberta Res. Coun. 44, 322 pp.
- Spath, L. F. 1946: Preliminary notes on the Cretaceous ammonite faunas of East Greenland. *Meddr Grønland* 132(4), 11 pp.
- Stemmerik, L. & Piasecki, S. 1990: Post-Caledonian sediments in North-East Greenland between 76° and 78° 30'N. *Rapp. Grønlands geol. Unders.* 148, 123–126.
- Stemmerik, L., Christiansen, F. G., Piasecki, S., Jordt, B., Marcussen, C. & Nøhr-Hansen, H. 1993: Depositional history and petroleum geology of the Carboniferous to Cretaceous sediments in the northern part of East Greenland. *In Vorren T. O.* (ed.) Arctic geology and petroleum potential. Amsterdam: Elsevier
- Stover, L. E. & Williams, G. L. 1987: Analyses of Mesozoic and Cenozoic organic-walled dinoflagellates 1987–1985. Am. Ass. strat. Palynol. Contr. Ser. 18, 243 pp.
- Sung Zhi-chen et al. ('Jiabo') 1978: [On the Paleogene dinoflagellates and archritarchs from the coastal region of Bohai], 190 pp. Nanking Institute of Geology and Palaeontology, Academia Sinica [in Chinese].
- Surlyk, F. 1977a: Stratigraphy, tectonics and palaeogeography of the Jurassic sediments of the areas north of Kong Oscars Fjord, East Greenland. *Bull. Grønlands geol. Unders.* **123**, 56 pp.
- Surlyk, F. 1977b: Mesozoic faulting in East Greenland. In Frost, R. T. C. & Dikkers, A. J. (ed.) Fault tectonics in N.W. Europe. Geologie Mijnb . 56, 311–327.
- Surlyk, F. 1978a: Submarine fan sedimentation along fault scarps on tilted fault blocks (Jurassic-Cretaceous boundary, East Greenland). Bull. Grønlands geol. Unders. 128, 108 pp.
- Surlyk, F. 1978b: Mesozoic geology and palaeogeography of Hochstetter Forland, East Greenland. Bull. geol. Soc. Denmark 27, 73–87.
- Surlyk, F. 1990: Timing, style and sedimentary evolution of Late Palaeozoic–Mesozoic extensional basins of East Greenland. *In* Hardman, R. F. P. & Brooks, J. (ed.) Tectonic events responsible for Britain's oil and gas reserves. *Geol. Soc. (London) Spec. Publ.* 55, 107–125.
- Surlyk, F., Callomon, J. H., Bromley, R. G. & Birkelund, T. 1973: The stratigraphy of the Jurassic – Lower Cretaceous sediments of Jameson Land and Scoresby Land, East Greenland. Bull. Grønlands geol. Unders. 105 (also Meddr Grønland 193, 5), 76 pp.
- Surlyk, F., Clemmesen, L. B. & Larsen, H. C. 1981: Post-Paleozoic evolution of the East Greenland continental margin. *In Kerr*, J. W. & Fergusson, A. J. (ed.) Geology of North Atlantic Borderlands. *Mem. Can. Soc. Petrol. Geol.* 7, 611– 645.

Surlyk, F., Piasecki, S. & Rolle, F. 1986: Initiation of petroleum exploration in Jameson Land, East Greenland. *Rapp. Grønlands geol. Unders.* **128**, 103–121.

- Thomas, J. E. & Cox, B. M. 1988: The Oxfordian–Kimmeridgian Stage boundary (Upper Jurassic): Dinoflagellate cyst assemblages from the Harome Borehole, north Yorkshire, England. *Rev. Palaeobot. Palynol.* 55, 313–326.
- Thusu, B. 1978: Aptian to Toarcian dinoflagellate cysts from Arctic Norway. In Thusu, B. (ed.) Distribution of biostratigraphically diagnostic dinoflagellate cysts and miospore from the Northwest European continental shelf and adjacent areas. Continental Shelf Inst. Publ. 100, 61–95.
- Upshaw, C. F. 1963: Occurrence of Aequitriradites in the Upper Cretaceous of Wyoming. Micropalaentology 9, 427–431.
- Uwins, P. J. R. & Batten, D. J. 1988: Early to mid-Cretaceous palynology of northeast Libya. *In* El-Arnauti, A., Owens, B. & Thusu, B. (ed.) *Subsurface palynostratigraphy of northeast Libya*, 215–257. Garyounis University Publications Benghazi – Libya (SPLAJ).
- Valensi, L. 1955: Sur quelques microorganismes des silex crétaces du Magdalénien de Saint-Amand (Cher). Bull. Soc. géol. France (6) 5, 35–40.
- Vozzhennikova, T. F. 1967: [Fossil peridineas of the Jurassic, Cretaceous and Paleogene deposits of the USSR], 347 pp. Trudy Akad. Nauk SSSR, Sib. Otd, Inst. Geol. Geof. (English translation by E. Lees & W. A. S. Sarjeant (ed.) 1971 National lending Library for Science and Technology, 453 pp.)
- Wall, D. & Evitt, W. R. 1975: A comparison of the modern genus *Ceratium* Schrank, 1793, with certain Cretaceous marine dinoflagellates. *Micropaleontology* 21, 14–44.
- Wetzel, W. 1952: Beitrag zur Kenntnis des danzeitlichen Meeresplankton. Geol. Jb. 66, 391–420.
- Wiggins, V. D. 1972: Two new Lower Cretaceous dinoflagellate genera from southern Alaska (U.S.A.). *Rev. Palaebot. Paly*nol. 14, 297–308.
- Wiggins, V. D. 1975: The dinoflagellate Family Pareodiniaceae: a discussion. *Geoscience and Man* 11, 95–115.
- Williams, G. L. 1975: Dinoflagellate and spore stratigraphy of the Mesozoic–Cenozoic offshore eastern Canada. *Pap. Geol. Surv. Can.* 74–30, 107–161.
- Williams, G. L. 1977: Dinocysts their paleontology, biostratigraphy and palaeoecology. *In Ramsay, A. T. S. (ed.) Oceanic micropalaeontology*, 1231–1325. London: Academic Press.
- Williams, G. L. & Bujak, J. P. 1985: Mesozoic and Cenozoic dinoflagellates. *In* Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K. (ed.) *Plankton stratigraphy*, 847–964. Cambridge Earth Science Series, Cambridge University Press.
- Yun, H.-S. 1981: Dinoflagellaten aus der Oberkreide (Santon) von Westfalen. Palaeontographica B 177, 1–89.

APPENDIX

Table 1. Sections yielding dinoflagellate cysts from North-East Greenland

Section	Location / Region	Latitude	Longitude	Thickness metres	Sample No. (GGU)
1	N of Haystack/	75°49′	19°40′	25	360371, 75, 77, 80
2	N of Kap Oswald Heer/	75°33′	19°23′	12	351550, 58
3	Sengstacke Bugt/N Shannon	75°10'	18º12'	1	351550
4	Sengstacke Bugt/N Shannon	75 20'	18 07'	i	279826
5	Kan David Gray/S Shannon	75 20	18028'	i	351565
5	Kap David Gray/S Shannon Kap Maurar/N Kubp ()	73 00	10°45'	13	342108 9 10 11
7	'East coast'/Kubn Ø	74 51	10°47'	90	342079 80 81 82 83 84 85 86 87
é	'East coast'/Kuhn Ø	74 49	10°48'	32	342072 76 78
0	'East coast'/Kuhn Ø	74 49	19 40	32	342072, 70, 78
10	Basisphinetes	74 40	19 40	25	342009, 70, 71
10	Ravine'/Kuhn Ø	74*40	19 32	20	342092, 93, 94
11	N of Kap Hamburg/S Kuhn Ø	74°45'	20°00'	100	342102, 3, 4, 5, 6, 7
12	SW of Kap Berlin/ Wollaston Forland	74°37′	19°37′	160	351589, 91, 92, 95, 98
13	SW of Kap Berlin/ Wollaston Forland	74°37′	19°37'	296	351573, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88
14	Palnatoke Bjerg/ Wollaston Forland	74°37′	20°38'	65	342131, 32, 33, 34, 35, 36
15	Rødryggen/Wollaston Fl	74°31'	19°49'	10	351526, 27
16	Rødryggen/Wollaston Fl	74°31'	19°49'	5	351512, 13
17	Aucellabjerget/ Wollaston Forland	74°31'	20°22'	120	342161, 62, 63, 64, 66, 67, 68, 69, 70,
18	SE of Kuhnpasset/ Wollaston Forland	74°31′	20°08'	60	342218, 19, 20, 21, 22
19	N of Gyldenspids/	74°30′	19°45′	40	342214, 15, 16, 17
20	Gyldenspids/Wollaston Fl.	74°29'	19°43′	470	342176, 79, 83, 85, 86, 87, 89, 91, 93,
21	Stratumbjerget/	74°27'	20°12′	107	342230, 31, 32, 34, 35, 36, 37, 38, 39,
22	Wontaktrusing/Clausing (740251	200251	147	40
22	Langelinie/Clavering Ø	74°14'	20°35′	386	351669, 70, 71, 73, 76, 77, 80, 81, 82,
24	N Home Forland/	73°53′	20°40′	122	83, 84, 85, 80, 88 346451, 56, 58, 61, 62
25	N Home Forland/	73°53′	20°40'	105	345440, 42, 45, 50
26	Spaths Plateau	73050	21014	12	351627 28 29 30
20	Tobias Dal/Hold w Hone	73 944'	21 14	42	351626
28	I ungnaely/Hold w. Hope	73038'	20°28'	15	351636 38
20	Tyerdal/Geogr Soc Ø	73 50	23°01'	15	342500
30	Tværdal/Georg. Soc. Ø	72°58′	23°02′	415	324619, 20, 06, 22, 07, 09, 10, 11, 13,
31	Tyerdal/Geogr Soc Ø	77057'	23004'	65	324623 25 27 30
32	Shallow bore, Rold Bjerge/	72°46'	23°05′	23	303122-1, -3, -5
22	Rold Biarga/Traill (A	770451	220021	30	324020 32
34	Månadal/Traill Ø	72 45	23 03	10	324556 57
35	SE of Pold Diargo/Traill Ø	72 41	23 05	10	324507 10
36	Svinhufund Biorge/Traill Ø	72 24	23 13	75	324002 03 05 00 08
37	Svinhufuud Bjerge/Traill Ø	72 20	23 11	220	324092, 93, 93, 90, 98
38	Shallow hore Swinhuf	72 24	23 10	220	303137-1 -0 -15
20	vud Bjerge/Traill Ø	72 24	25 10	40	303127-1, -9, -13
39	Svinhutvud Bjerge/Traill Ø	72°25′	23°18'	5	335320, 21
40	vud Bjerge/Traill Ø	72°24	23°21′	24	303125-1, -4, -7

136

Table 2. Range charts of distribution and abundances of dinoflagellate cysts from North-East Greenland

The relative thickness of each section and the sample position is given in metres to the left of each GGU sample number. The thickness for the three sections representing shallow wells are calculated from surface downwards. The abundances are arranged on basis of first occurrences. A question mark indicates that the presence of the species is questionable. The relative abundances of each species is based on counting of more 300 specimens from each sample, except for a few almost barren samples. Percentages are based on the counting. Species not identified normally constitute 5 to 10 percent of the assemblages. This group is not illustrated on the range chart but is included in the counts. Miospores have not been counted or included in the range charts. The occurrence of other palynomorphs, miscellaneous and dinoflagellate cysts considered as reworked are listed last in the range charts. Key to symbols at end.

0 1 2	Ϋ́.		
2 2 2 2 2			SPECIES LOCATION INDEX
		Index r	numbers are the columns in which species appear.
6066		1000000000	
3333	1	INDEX	
1 5 70		NUMBER	SPECIES
		15	
	1 HYSTRICHODINIUM VOIGTII	8	BATIOLADINIUM JAEGERI
	Z LAGENADINIUM? MEMBRANDIDIUM	9	BATIOLADINIUM LONGICORNUTUM
	3 LEPTODINIUM? HYALODERMOPSE	42	BATIOLADINIUM MICKOPODUM
	4 HESLERTONIA HESLERTONENSIS	43	BOURKIDINIUM GRANULATUM
	5 GALLAIOSPHAERIDIUM ASYMMETRICUM	5	CALLATOSPHAERIDIUM ASYMMETRICUM
	6 KIOKANSIUH POLYPES POLYPES	39	CASSICULOSPHAERIDIA RETICULATA
	7 NYKTERICYSTA? VITREA	10	CTRCHLORINTIM APP C ATTADAL TOUR
	B BATIOLADINIUM JAEGERI	12	CIRCULODINIUM AFF. C. ATTAUALICUM
	9 BATTOCHDINION LONGICORNOTON	11	
	TO CREARYDOPHORELLA TRABEGULOSA	10	
		14	CLEISTOSPHAERTDIUM ACCOULDED
	12 CIRCULODINIUM SP. 4	35	CORONIERER OCEANICA
		15	CONTREMA OCEANICA COTOROPERITOTATINA MUDERONCENSE
	15 CRIBROPERIDINIUM HUDEPONGENSE	44	DESMOCYSTA DI EKTA
	16 DINGODINIUM2 ALBERTIT	16	DINCODINTIM2 ALBERTIT
	17 FXIGUISPHAERA PLECTILIS	31	DISCORSIA NANNA
	18 FROMER AMPHORE	32	ENDOSCRINTUM CAMPANULA
	19 HYSTRICHODINIUM AFF. H. FURCATUM	17	EXIGUISPHAERA PLECTLIS
	20 HYSTRICHOSPHAERIDIUM ARBORISPINUM	36	EXOCHOSPHAERIDIUM PHRAGMITES
	21 HYSTRICHOSPHAERINA SCHINDEWOLFII	45	FLORENTINIA MANTELLII/COOKSONIAE group
	22 KLEITHRIASPHAERIDIUM EDINODES	18	FROMEA AMPHORA
	23 HUDERONGIA TETRAGANTHA	37	CONVAULACYSTA AFF. G. CASSIDATA
	24 OLIGOSPHAERIDIUM? ASTERIGERUM	46	GONYAULACYSTA HELICOIDEA HELICOIDEA
	25 OLIGOSPHAERIDIUM COMPLEX	4	HESLERTONIA HESLERTONENSIS
	26 PSEUDOCERATIUM TOVEAE SP. NOV.	19	NYSTRICHODINIUM AFF. H. FURCATUM
	27 PSEUDOCERATIUM NUDUM	1	HYSTRICHODINIUM VOIGTII
	28 SIRMIODINIUM GROSSII	20	HYSTRICHOSPHAERIDIUM ARBORISPINUM
	29 SPINIFERITES SPP.	21	HYSTRICHOSPHAERINA SCHINDEWOLFII
	30 TRICHODINIUM SPEETONENSE	6	KIOKANSIUM POLYPES POLYPES
· — · ·	31 DISCORSIA NANNA	22	KLEITHRIASPHAERIDIUM EOINODES
	32 ENDOSCRINIUM CAMPANULA	2	LAGENADINIUM? MEMBRANOIDIUM
· — · ·	33 OLIGOSPHAERIDIUM PERFORATUM PERFORATUM	3	LEPTODINIUM? HYALODERMOPSE
	34 SURCULOSPHAERIDIUM AFF. S. PHOENIX	23	MUDERONGTA TETRACANTHA
· · ·	35 CORONIFERA OCEANICA	7	NYKTERICYSTA? VITREA
	36 EXOCHOSPHAERIDIUM PHRAGMITES	25	OLIGOSPHAERIDIUM COMPLEX
· — · —	37 GONVAULACYSTA AFF. G. CASSIDATA	33	OLIGOSPHAERIDIUM PERFORATUM PERFORATUM
	38 TANYOSPHAERIDIUM BOLETUS	24	OLIGOSPHAERIDIUM? ASTERIGERUM
· · —	39 CASSICULOSPHAERIDIA RETICULATA	27	PSEUDOCERATIUM NUDUM
· · ;	40 CLEISTOSPHAERIDIUM HUGUONJOTII	26	PSEUDOCERATIUM TOVEAE SP. NOV.
· · · — (41 HALLODINIUM KRUTZSCHII	47	RHOMBODELLA VESCA
· · · - :	42 BATIOLADINIUM MICROPODUM	48	RHYNCHODINIOPSIS CF. R. APTIANA
	43 BOURKIDINIUM GRANULATUM	28	SIRMIODINIUM GROSSII
· · · ·)	44 DESMOCYSTA PLEKTA	29	SPINIFERITES SPP.
· · · —)	45 FLORENTINIA MANTELLII/COOKSONIAE group	34	SURCULOSPHAERIDIUM AFF. S. PHOENIX
· · · •	46 GONVAULACYSTA HELICOIDEA HELICOIDEA	38	TANYOSPHAERIDIUM BOLETUS
• • • •	47 RHOMBODELLA VESCA	30	TRICHODINIUM SPEETONENSE
· · · - ;	48 RHYNCHODINIOPSIS CF. R. APTIANA	49	TUBOTUBERELLA SP.
•••	49 TUBOTUBERELLA SP.	41	WALLODINIUM KRUTZSCHII
3	subzone		section 1
1	zone		
U. Barr.	stage		N of Haystack Hochstetter Fl.

01				
			2.3	SPECIES LOCATION INDEX
	1		Index	numbers are the columns in which species appear.
51	Ű.		2000.02079	
CT CT	8		INDEX	
0 8	1		NUMBER	SPECIES
·v •	1 APTEODI	IUM CF. A. GRANDE	20	ACHOMOSPHAERA? NEPTUNI
·v •	2 BATIOLA	DINIUM HICROPODUM	28	ACRITARCH
·•• •	3 0ISCORS	A NANNA	1	APTEODINIUM CF. A. GRANDE
	4 FROMEA A	HPHORA	2	BATIOLADINIUM MICROPODUM
	5 KIOKANS	UM POLYPES POLYPES	7	CHLAMYDOPHORELLA TRABECULOSA
	6 VESPERO	SIS MAYI	8	CIRCULODINIUM BREVISPINOSUM
	7 CHLANYDO	PHORELLA TRABECULOSA	9	CIRCULODINIUM DISTINCTUM
	8 GIRCULO	INIUH BREVISPINOSUM	21	CLEISTOSPHAERIDIUM HUGUONIOTII
	9 GIRCULO	DINIUM DISTINCTUM	10	CLEISTOSPHAERIDIUM? ACICULARE
	10 CLEISTOS	PHAERIDIUM? ACICULARE	11	CRIBROPERIDINIUM EDWARDSII
	11 CRIBROPE	RIDINIUH EDWARDSII	22	DESMOCYSTA PLEKTA
	12 EXOCHOS	HAERIDIUM PHRAGMITES	3	DISCORSIA NANNA
	13 LEVISPH	ERA CF. L. CRASSICINGULATA	23	ELLIPSOIDICTYUM IMPERFECTUM
	14 ODONTOCH	TTINA OPERCULATA	12	EXOCHOSPHAERIDIUM PHRAGMITES
CCMM	15 OLIGOSPH	HAERIDIUM COMPLEX	24	FLORENTINIA MANTELLII/COOKSONIAE group
CICIUM	16 PALAEOPE	RIDINIUH CRETACEUM	4	FROMEA AMPHORA
	17 SENTUSI	DINIUM SP. 1	5	KIOKANSIUM POLYPES POLYPES
	18 SENTUSI	DINIUM SP. 2	13	LEVISPHAERA CF. L. CRASSICINGULATA
tom i	19 VESPERIC	PSIS LONGICORNIS	14	ODONTOCHITINA OPERCULATA
	20 ACHOMOSE	HAERA? NEPTUNI	25	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
· 1	21 CLEISTOS	PHAERIDIUN HUGUONIOTII	15	OLIGOSPHAERIDIUM COMPLEX
	22 DESMOCYS	TA PLEKTA	16	PALAEOPERIDINIUM CRETACEUM
	23 ELLIPSON	DICTYUN INPERFECTUN	17	SENTUSIDINIUM SP. 1
·— :	24 FLORENT	NIA MANTELLII/COOKSONIAE group	18	SENTUSIDINIUM SP. 2
	25 OLIGOSPH	AERIDIUM CF. D. PULCHERRIHUM	26	SIRMIODINIUM GROSSII
	26 SIRMIODI	NIUM GROSSII	27	SURCULOSPHAERIDIUM AFF. S. PHOENIX
	27 SURCULOS	PHAERIDIUM AFF. S. PHOENIX	19	VESPERIOPSIS LONGICORNIS
— •	28 ACRITAR	:H	6	VESPEROPSIS MAYI
4	subzone			section 2
ш	zone		1	
L.Alb.	stage			N OF KAP USWAID HEER HOCHStetter FI.

3	H .		SPECIES LOCATION INDEX
351		Index	numbers are the columns in which species appear.
55		TNDEX	
9		NUMBER	SPECIES
_	1 ACHOMOSPHAERA? NEPTUNI	1	ACHOMOSPHAERA? NEPTUNI
	2 CHLAMYDOPHORELLA TRABECULOSA	2	CHLAMYDOPHORELLA TRABECULOSA
- :	3 GIRCULODINIUM AFF. C. ATTADALICUM	3	CIRCULODINIUM AFF. C. ATTADALICUM
- :	4 GIRCULODINIUH DISTINCTUM	4	CIRCULODINIUM DISTINCTUM
	5 CLEISTOSPHAERIDIUM HUGUONIOTII	5	CLEISTOSPHAERIDIUM HUGUONIOTII
-	6 CLEISTOSPHAERIDIUM? ACICULARE	6	CLEISTOSPHAERIDIUM? ACICULARE
	7 DINGODINIUM? ALBERTII	7	DINGODINIUM? ALBERTII
· · u	B ELLIPSOIDICTYUM IMPERFECTUM	8	ELLIPSOIDICTYUM IMPERFECTUM
- 1	9 HESLERTONIA HESLERTONENSIS	9	HESLERTONIA HESLERTONENSIS
- 1	10 KIOKANSIUM POLYPES POLYPES	10	KIOKANSIUM POLYPES POLYPES
- 1	11 LEVISPHAERA CF. L. CRASSICINGULATA	11	LEVISPHAERA CF. L. CRASSICINGULATA
- 3	12 DOONTOCHITINA OPERCULATA	12	ODONTOCHITINA OPERCULATA
access	13 OLIGOSPHAERIDIUM COMPLEX	13	OLIGOSPHAERIDIUM COMPLEX
mm ;	14 PALAEOPERIDINIUM GRETACEUM	14	PALAEOPERIDINIUM CRETACEUM
-	15 SENTUSIDINIUM SP. 1	15	SENTUSIDINIUM SP. 1
	16 SENTUSIDINIUM SP. 2	16	SENTUSIDINIUM SP. 2
-	17 SPINIFERITES SPP.	17	SPINIFERITES SPP.
-	18 VESPEROPSIS LONGICORNIS	18	VESPEROPSIS LONGICORNIS
	19 HALLODINIUM KRUTZSCHII	19	WALLODINIUM KRUTZSCHII
1	subzone		section 3
III	zone	1	
L.Apt.	stage	1	Sengstacke Bugt N Shannon

ſ

01 M 276826 ?	1 CHLAHYDOPHORELLA TRABECULOSA 2 CIRCULODINIUH BREVISFINOSUH 3 DINGODINIUM? ALBERTII 4 GONYAULACYSTA FASTIGIATA 5 HYSTRICHOSPHAERIDIUH ARBORISPINUH 6 LEVISPHAERA CF. L. CRASSICINGULATA 7 HUDERONGIA TETRAGANTHA 8 OLIGOSPHAERIDIUH COMPLEX 9 OLIGOSPHAERIDIUH COMPLEX 9 OLIGOSPHAERIDIUH ANAPHRISSUH 10 PSEUDOCERATIUH ANAPHRISSUH 11 PSEUDOCERATIUH PELLIFERUH 12 SPINIFERITES SPP.	SPECIES LOCATION INDEX Index numbers are the columns in which species appear. INDEX NUMBER SPECIES 1 CHLAMYDOPHORELLA TRABECULOSA 2 CIRCULODINIUM BREVISPINOSUM 3 DINGODINIUM? ALBERTII 4 GONYAULACYSTA FASTIGIATA 5 HYSTRICHOSPHAERIDIUM ARBORISPINUM 6 LEVISPHAERA CP. L. CRASSICINGULATA 7 MUDERONGIA TETRACANTHA 8 OLIGOSPHAERIDIUM COMPLEX 9 OLIGOSPHAERIDIUM? ASTERIGERUM 10 PSEUDOCERATIUM ANAPHRISSUM 11 PSEUDOCERATIUM PELLIFERUM 12 SPINIFERITES SPP.
2	subzone	section 4
1	zone	
L.Bar.	stage	Sengstacke Bugt N Shanhon

3			SPECIES LOCATION INDEX
ω		Index	numbers are the columns in which species appear.
-			
6		INDEX	
5		NUMBER	SPECIES
_	1 APTEODINIUM CF. A. GRANDE	1	APTEODINIUM CF. A. GRANDE
-	2 BATIOLADINIUM JAEGERI	2	BATIOLADINIUM JAEGERI
-	3 CHLANYDOPHORELLA TRABECULOSA	3	CHLAMYDOPHORELLA TRABECULOSA
_	4 GIRCULODINIUM' SP. 2	1	CIRCULODINIUM? SP. 2
-	5 CLEISTOSPHAERIDIUM? ACICULARE	5	CLEISTOSPHAERIDIUM? ACICULARE
	6 CORONIFERA OCEANICA	6	CORONIFERA OCEANICA
	7 CRIBROPERIDINIUM EDWARDSII	7	CRIBROPERIDINIUM EDWARDSII
10	8 DINGODINIUM? ALBERTII	8	DINGODINIUM? ALBERTII
-	9 ELLIPSOIDICTYUN IMPERFECTUM	9	ELLIPSOIDICTYUM IMPERFECTUM
-	10 EXOCHOSPHAERIDIUM PHRAGMITES	10	EXOCHOSPHAERIDIUM PHRAGMITES
- 1	11 FLORENTINIA MANTELLII/COOKSONIAE GROUP	- 11	FLORENTINIA MANTELLII/COOKSONIAE group
	12 FROMEA FRAGILIS	12	FROMEA FRAGILIS
- :	13 HAPSOCYSTA? BENTERE SP. NOV.	13	HAPSOCYSTA? BENTEAE SP. NOV.
- 1	14 LEVISPHAERA CF. L. CRASSICINGULATA	14	LEVISPHAERA CF. L. CRASSICINGULATA
	15 LITOSPHAERIDIUH ARUNDUH	15	LITOSPHAERIDIUM ARUNDUM
- 3	16 ODONTOCHITINA OPERCULATA	16	ODONTOCHITINA OPERCULATA
- 1	17 ODONTOCHITING SINGHII	17	ODONTOCHITINA SINGHII
· v	18 OLIGOSPHAERIDIUM CF. D. PULCHERRIMUM	18	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
	19 0LIGOSPHAERIDIUH COMPLEX	19	OLIGOSPHAERIDIUM COMPLEX
	20 DLIGOSPHAERIDIUM POCULUM	20	OLIGOSPHAERIDIUM POCULUM
-	21 OLOGOSPHAERIDIUM SP. 1	21	OLOGOSPHAERIDIUM SP. 1
	22 PALAEOPERIDINIUM CRETACEUM	22	PALAEOPERIDINIUM CRETACEUM
- 1	23 PAREODINIA SPP.	23	PAREODINIA SPP.
- 1	24 PSEUDOCERATIUN EXPOLITUM	24	PSEUDOCERATIUM EXPOLITUM
- 1	25 PSEUDOCERATIUM POLYMORPHUM	25	PSEUDOCERATIUM POLYMORPHUM
- 1	26 SENTUSIDINIUM SP. 1	26	SENTUSTDINTUM SP. 1
	27 SPINIFERITES SPP.	27	SPINIFERITES SPP
- 1	20 VESPEROPSIS MAYI	28	VESPEROPSIS MAYI
1	subzone		section 5
IV	zone	1	
M.Alb.	stage		Kap David Gray S. Shannon

0 - 1					
200	ω				SPECIES LOCATION INDEX
55	3			Index	numbers are the columns in which species appear.
42 2	AN			0.0000000000000000000000000000000000000	
10	E 1	1		INDEX	
890	-	1		NUMBER	SPECIES
<u> </u>	. 1	1	CHLAMYDOPHORELLA NYET	51	THATE FROM LEAR
		2	HESLERTONIA HESLERTONENSIS	31	ACHOMOSPHAERA? NEPTUNT
		3	HUDERONGIA TETRACANTHA	50	ACRITARCH
		4	HYSTRICHOSPHAERINA SCHINDEWOLFII	16	BATIOLADINIUM JAEGERI
		5	CIRCULODINIUM AFF. C. ATTADALICUM	6	BATIOLADINIUM LONGICORNUTUM
-	•	6	BATIOLADINIUM LONGICORNUTUM	17	BATIOLADINIUM MICROPODUM
		7	CIRCULODINIUH DISTINCTUM	40	BATIOLADINIUM? EXIGUUM
	-	8	HYSTRICHODINIUM AFF. H. FURCATUM	44	BATIOLADINIUM? PELLIFERUM
· · · · ·	•	9	HYSTRICHOSPHRERIDIUM ARBORISPINUM	45	CALLATOSPHAERIDIUM ASYMMETRICUM
	•	10	KIOKANSIUN POLYPES POLYPES	1	CHLAMYDOPHORELLA NYEI
	•	110	OLIGOSPHAERIDIUM CF. D. PULCHERRIMUM	18	CHLAMYDOPHORELLA TRABECULOSA
	•	12	PSEUDOCERATIUM TOVERE SP. NOV.	5	CIRCULODINIUM AFF. C. ATTADALICUM
V. Save	•	13	SENTUSIDINIUM SP. 2	7	CIRCULODINIUM DISTINCTUM
	•	14	SIRHIODINIUM GROSSII	19	CLEISTOSPHAERIDIUM? ACICULARE
	•	15	TRICHODINIUM SPEETONENSE	46	DINGODINIUM? ALBERTII
		16 1	BATIOLADINIUM JAEGERI	39	DISCORSIA NANNA
		17	BATIOLADINIUH MIGROPODUM	20	EXOCHOSPHAERIDIUM PHRAGMITES
		18	CHLANYDOPHORELLA TRABECULOSA	36	FLORENTINIA MANTELLII/COOKSONIAE group
		20	EXCENSENCERIDIUM PURCHUTER	37	FROMEA AMPHORA
		21	KIETTHRIGSPHEERIDIUM FOILORE	41	FROMEA FRAGILIS
		22	LEVISPHAFRA CE. L CRASSICINGULATA	42	FROMEA SP. I
CITIC		23	OLIGOSPHAERIDIUH COMPLEY	33	GONTROLACISTA HELICOIDEA HELICOIDEA
_		24	LEPTODINIUM? HYALODERMOPSE	8	HYSTRICHORINTIM ARE & PURCATUM
_		25	PALAEOPERIDINIUM CRETACEUM	9	HYSTRICHOSPHAERTDIUM APPORTSDINUM
	- :	26	SENTUSIDINIUM SP. 1	4	HYSTRICHOSPHAERINA SCHINDRHOLDIT
-	- :	27	SPINIFERITES SPP.	10	KIOKANSTUM POLYPES POLYPES
	- ;	28	TANYOSPHAERIDIUM BOLETUS	21	KLEITHRIASPHAERIDIUM EOINODES
· v· v·	um ;	29	VESPEROPSIS LONGICORNIS	38	LAGENADINIUM? MEMBRANOIDINIUM
		30	WALLODINIUM KRUTZSCHII	24	LEPTODINIUM? HYALODERMOPSE
· — ·	•	31	ACHOMOSPHRERA? NEPTUNI	22	LEVISPHAERA CF. L. CRASSICINGULATA
	e 8	35	SENTUSIDINIUM VERRUCOSUM	3	MUDERONGIA TETRACANTHA
	•	33	GONYAULACYSTA HELICOIDEA HELICOIDEA	34	NYKTERICYSTA? VITREA
	•	34	NYKTERICYSTA? VITREA	47	ODONTOCHITINA OPERCULATA
	•	35	SURCULOSPHAERIDIUM AFF, S. PHOENIK	48	OLIGOSPHAERIDIUM CF. O. FENESTRATUM
		36 1	FLORENTINIA MANTELLII/COOKSONIAE group	11	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
		37	FROMEA AMPHORA	23	OLIGOSPHAERIDIUM COMPLEX
		38	LAGENADINIUM? MEMBRANDIDINIUM	49	OLIGOSPHAERIDIUM PERFORATUM PERFORATUM
	_	39	DISCORSIA NANNA	25	PALAEOPERIDINIUM CRETACEUM
		40	EPONED ERACILLE	43	PAREODINIA SPP.
		42	FROMES SP. 1	12	PSEUDOCERATIUM TOVERE SP. NOV.
	_	43	PAREODINIA SPP.	20	SENTUSIDINIUM SP. 1
	_	44	BATIOLADINIUM? PELLIFERUM	32	SENTUSIDINIUM SP. Z
	- 1	45	CALLAIOSPHAERIDIUH ASYMMETRICUM	14	SIRMIODINIUM GROSSII
	- 1	46	DINGODINIUM? ALBERTII	27	SPINIFERITES SPP
\rightarrow \times \rightarrow	- 3	47	ODONTOCHITINA OPERCULATA	35	SURCULOSPHAERIDIUM AFF. S. PHOENTY
	-	48	OLIGOSPHAERIDIUM CF. O. FENESTRATUM	28	TANYOSPHAERIDIUM BOLETUS
	-	49	OLIGOSPHAERIDIUM PERFORATUM PERFORATUM	15	TRICHODINIUM SPEETONENSE
	•	50	AGRITARCH	29	VESPEROPSIS LONGICORNIS
·—·	•	51	PHAIR FROM LEAF	30	WALLODINIUM KRUTZSCHII
3			subzone		section 6
1	Ш		zones		
U. Barr	L.A	pt.	stages		кар Maurer N Kuhn Ø

-

0 - 2 3 4 5 6 -	3 40 1	i ii			
33333333					SPECIES LOCATION INDEX
	ωω	1 1		Index	numbers are the columns in which species appear.
420442	42	: ::			
008008008008008008008008008008008008008	0.8	: :		INDEX	
	" ~	1 8		NUMBER	SPECTES
		1	CRIBROPERIDINIUM EDWARDSII	72	2HATE FROM LEAF
·····	•	2	CIRCULODINIUM' SP. 4	53	ACHOMOSPHAERA? NEPTUNI
	•	3	CLEISTOSPHAERIDIUM HUGUONIOTII	73	ACRITARCH
······································	•	4	BATIOLADINIUM LONGICORNUTUM	32	APTEODINIUM RETICULATUM
	•	5	OLIGOSPHAERIDIUM? ASTERIGERUM	67	BATIACASPHAERA SPUMOSA
		6	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM	42	BATIOLADINIUM JAEGERI
			CIRCULODINIUM DISTINCTUM	10	BATIOLADINIUM LONGICORNUTUM
		9	DISCORSIA NANNA	59	BATTOLADINTUM? EXTCUUM
· · · · · · · · · · · · · · · · · · ·		10	ELLIPSOIDICTYUM IMPERFECTUM	60	BATIOLADINIUM? PELLIFERUM
	•	11	EXOCHOSPHAERIDIUH PHRAGMITES	54	CALLAIOSPHAERIDIUM ASYMMETRICUM
	•	12	HYSTRICHODINIUM AFF. H. FURCATUM	68	CANNINGIA PALLIATA
	•	13	HYSTRICHOSPHAERIDIUM ARBORISPINUM	7	CHLAMYDOPHORELLA TRABECULOSA
		14	KLEITHRIASPHAERIDIUM EDINDDES	20	CIRCULODINIUM AFF. C. ATTADALICUM
		16	DEIGOSPHAERIDIUM CF. O. PULCHERRIMUM	8	CIRCULODINIUM DISTINCTUM
		17	SENTUSIDINIUM SP. 1	2	CIRCULODINIUM? SP. 4 CIRTSTOS PHARATOLUM AUCUONIOTII
		18	SIRMIODINIUM GROSSII	21	CLEISTOSPHAERIDIUM? ACTCULARE
	+ 1	19	BATIOLADINIUM MIGROPODUK	46	CORONIFERA OCEANICA
		20	CIRCULODINIUM AFF. C. ATTADALICUM	1	CRIBROPERIDINIUM EDWARDSII
	P	21	CLEISTOSPHAERIDIUM? ACICULARE	43	DESMOCYSTA PLEKTA
and the first former		22	DINGODINIUM? ALBERTII	22	DINGODINIUM? ALBERTII
		23	FLORENTINIA MANTELLII/COOKSONIAE group	9	DISCORSIA NANNA
		25	NYKTERICYSTA? VITREA	10	ELLIPSOIDICTYUM IMPERFECTUM
		26	OLIGOSPHAERIDIUM COMPLEX	51	EXTCUTSPHAERA PLECTILIS
	- 3	27	PALAEOPERIDINIUM GRETAGEUM	11	EXOCHOSPHAERIDIUM PHRAGMITES
	- 3	28	SPINIFERITES SPP.	23	FLORENTINIA MANTELLII/COOKSONIAE group
	- 1	29	TANYOSPHAERIDIUM BOLETUS	24	FROMEA AMPHORA
	- i	30	MALLODINIUM KRUTZSCHII	55	FROMEA FRAGILIS
• • • • • • • • • • •	1 3	31	HYSTRICHODINIUM RAMOIDES	61	FROMEA SP. 1
	1: 1	32	APTEODINIUM RETICULATUM	49	GONYAULACYSTA HELICOIDEA HELICOIDEA
	1. 1	34	HESI ERTONIO HESI ERTONENCIO	34	HESLERTONIA HESLERTONENSIS
	1. 1	35	OLIGOSPHAERIDIUM POCULUM	31	HYSIRICHODINIUM AFF. H. FURCATUM
· ·· · · ·· ·· ·· ··		36	PAREODINIA SPP.	38	HYSTRICHODINIUM VOIGTII
· — · —	. 3	37	SENTUSIDINIUM SP. 2	13	HYSTRICHOSPHAERIDIUM ARBORISPINUM
• •	•	38	HYSTRICHODINIUM VDIGTII	39	HYSTRICHOSPHAERINA SCHINDEWOLFII
	•	39	HYSTRICHOSPHAERINA SCHINDEWOLFII	50	KIOKANSIUM POLYPES POLYPES
•	1· 3	40	LAGENADINIUM? MEMBRANDIDIUM	14	KLEITHRIASPHAERIDIUM EOINODES
··-	1: 1	410	LEPTODINIUM? HADRUM	40	LAGENADINIUM? MEMBRANOIDIUM
		42	BATIOLADINIUM JAEGERI	41	LEPTODINIUM? HADRUM
		44	LEVISPHAFRA CF. L. CRASSICINGULATA	44	LEPTODINIUM? HTALUDERMOPSE
	- 1	45	MUDERONGIA TETRACANTHA	45	MUDERONGIA TETRACANTHA
$\cdot \cdot - \cdot \cdot \cdot \cdot$	•	46	CORONIFERA DCEANICA	25	NYKTERICYSTA? VITREA
•••••	•	47	PROLIXOSPHAERIDIUM PARVISPINUM	69	ODONTOCHITINA CF. O. IMPARILIS
· · — · · · — ·	× 3	48	OLIGOSPHAERIDIUM PROLIXISPINOSUM	56	ODONTOCHITINA OPERCULATA
•••		49	GONYAULACYSTA HELICOIDEA HELICOIDEA	15	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
	Ľ	51	EXIGUISPHAERA PLECTILIS	63	OLIGOSPHAERTDIUM COMPLEX
· · · · · ·	L i	52	PSEUDOCERATIUM PELLIFERUM	35	OLIGOSPHAERIDIUM PERFORATOM PERFORATOM
· · ·	H :	53	ACHONOSPHAERA ! NEPTUNI	48	OLIGOSPHAERIDIUM PROLIXISPINOSUM
•••••••••••••••••••••••••••••••••••••••	~	54	CALLAIOSPHAERIDIUM ASYMMETRICUM	5	OLIGOSPHAERIDIUM? ASTERIGERUM
· · · · ·		55	FROMEA FRAGILIS	27	PALAEOPERIDINIUM CRETACEUM
		56	SUBCIL OSPHOEDIATINA OPERCULATA	36	PAREODINIA SPP.
		58	TRICHODINIUM SPEETONENSE	47	PROLIXOSPHARRIDIUM PARVISPINUM
· · · · — · · —	-	59	BATIOLADINIUM? EXIGUUM	66	PSEUDOCERATIUM IVERI SP. NOV
	•	60	BATIOLADINIUM? PELLIFERUM	70	PSEUDOCERATIUM NUDUM
· · · · ·	•	61	FROMEA SP. 1	52	PSEUDOCERATIUM PELLIFERUM
· · · · · · · · · ·		62	LEPTODINIUM? HYALODERMOPSE	16	PSEUDOCERATIUM TOVEAE SP. NOV.
· · · · · · · · · · · · · · · · · · ·	• 1	63	OLIGOSPHAERIDIUM PERFORATUM PERFORATUM	74	PTEROSPERMELLA CF. P. AUSTRALIENSIS
	Ľ :	64	SYSTAMATOPHORA AFF. S. CRETACEA	17	SENTUSIDINIUM SP. 1
		66	SUBTICISPHEER PERLUGIDA	37	SENTUSIDINIUM SP. Z
	ion i	67	BATIACASPHAERA SPUMOSA	28	SPINIFERITES SPP.
	_ 1	68	CANNINGIA PALLIATA	6	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM
	~	69	ODONTOCHITINA CF. O. IMPARILIS	65	SUBTILISPHAERA PERLUCIDA
	um l	70	PSEUDOCERATIUM NUDUM	57	SURCULOSPHAERIDIUM AFF. S. PHOENIX
	-	71	PSEUDOCERATIUN CF. P. RETUSUN	64	SYSTAMATOPHORA AFF. S. CRETACEA
	•	72	HAIR FROM LEAF	29	TANYOSPHAERIDIUM BOLETUS
	<u> </u>	73	ACRITARCH	58	TRICHODINIUM SPECTONENSE
		75	ULVELLA NANNAE	75	ULVELLA NANNAE
		76	TUBOTUBERELLA SP.	30	WALLODINIUM KRUTZSCHII
	-	-		100	
3		sub	zone		section 7
ĩ	11	700	es	1	
		2011			"East coast" Kuhn Ø
U. Barremian	L.AD	. stat	162		

1	1	1
1	+	1

32 16 01	1 1				
3 3 3				SPECIES LOCATION INDEX	
6 6 6 6 6 6 6			Index	numbers are the columns in which species appear.	
120	1 1		INDEX		
78 76 72			NUMBER	SPECIES	
	1 1				
<u> </u>	1	BATIOLADINIUM? PELLIFERUM	46	ACHOMOSPHAERA? NEPTUNI	
— •••	2	FROMEA AMPHORA	56	ACRITARCH	
	3	GONYAULACYSTA HELICOIDEA HELICOIDEA	10	BATIOLADINIUM JAEGERI	
-··	: 1:	LEPTODINIUM? HYALODERMOPSE	11	BATIOLADINIUM LONGICORNUTUM	
_ : :		POPEDITATO SPP	47	BATTOLADINIUM MICROPODUM	
		CRIBROPERIOINIUH? AFF. C. CORNUTUM	ĩ	BATIOLADINIUM? PELLIFERUM	
	8	RHYNCHODINIOPSIS FIMBRIATA	48	CALLAIOSPHAERIDIUM ASYMMETRICUM	
	. 9	BATIOLADINIUM? EXIGUUM	53	CASSICULOSPHAERIDIA MAGNA	
	1 10	BATIOLADINIUM JAEGERI	12	CHLAMYDOPHORELLA NYEI	
	11	BATIOLADINIUM LONGICORNUTUM	13	CHLAMYDOPHORELLA TRABECULOSA	
	12	CHLANYDOPHORELLA NYEI	14	CIRCULODINIUM DISTINCTUM	
	13	CHLANYDOPHORELLA TRABECULOSA	38	CLEISTOSPHAERIDIUM HUGUONIOTII	
	1 14	GIRCULODINIUM DISTINCTUM	15	CLEISTOSPHAERIDIUM? ACICULARE	
	15	CLEISTOSPHRERIDIUM? ACIGULARE	49	CORONIFERA OCEANICA	
	17	CRIBROPERIDINIUM FONAROSII	17	CRIBROPERIDINIUM MUDERONGENSE	
	18	DINGODINIUM? ALBERTII	7	CRIBROPERIDIATON HODERONGENSE	
	19	DISCORSIA NANNA	39	DESMOCYSTA PLEKTA	
	20	ENDOSCRINIUM CAMPANULA	18	DINGODINIUM? ALBERTII	
	21	HYSTRICHODINIUM VOIGTII	19	DISCORSIA NANNA	
000000000000	22	HYSTRICHOSPHAERIDIUM ARBORISPINUH	20	ENDOSCRINIUM CAMPANULA	
	23	HYSTRICHDSPHAERINA SCHINDEWOLFII	10	EXOCHOSPHAERIDIUM PHRAGMITES	
	24	KIOKANSIUM POLYPES POLYPES	2	FROMEA AMPHORA	
	25	KLEITHRISSPHAERIDIUM EDINODES	41	FROMEA FRAGILIS	
	1 26 1	HUDERONGIA TETRACANTHA	3	GONYAULACYSTA HELICOIDEA HELICOIDEA	
	2/	OLIGOSPHAERIDIUH CE OLEUNERENUM	50	HESLENTONIA HESLENTONENSIS	
	29	PALAEOPERIDINIUM CRETACEUM	21	HYSTRICHODINIUM AFF. H. FURCATUM	
	30	PSEUDOCERATIUM CF. P. SOLOCISPINUM	22	HYSTRICHOSPHAERIDIUM ARBORISPINUM	
	31	PSEUDOCERATIUM TOVERE SP. NOV.	23	HYSTRICHOSPHAERINA SCHINDEWOLFII	
	32	SIRMIODINIUM GROSSII	24	KIOKANSIUM POLYPES POLYPES	
	33	SPINIFERITES SPP.	25	KLEITHRISSPHAERIDIUM EOINODES	
	34	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM	4	LEPTODINIUM? HYALODERMOPSE	
	35	TANYOSPHAERIDIUH BOLETUS	42	LEVISPHAERA CF. L. CRASSICINGULATA	
	36	TRICHODINIUM SPEETONENSE	26	MUDERONGIA TETRACANTHA	
	37	WALLODINIUM KRUTZSCHII	5	NYKTERICYSTA? VITREA	
	30	DESHOCKETA BLEKTO	54	OLICOS DUARDIDIUM CR. O. DUI CHERRINIM	
	37	FEACHOSPHAEDINIUM PUPAGNITES	28	OLIGOSPHAERIDIUM COMPLEY	
	41	FROMEA FRAGILIS	52	OLIGOSPHAERIDIUM POCULUM	
	42	LEVISPHAERA CF. L. CRASSICINGULATA	55	OLIGOSPHAERIDIUM? ASTERIGERUM	
	43	PHOBEROGYSTA NEOCOMICA NEOCOMICA	29	PALAEOPERIDINIUM CRETACEUM	
· — ·	44	SENTUSIDINIUM SP. 1	6	PAREODINIA SPP.	
·—·	45	SURCULOSPHAERIDIUM AFF. S. PHOENIX	43	PHOBEROCYSTA NEOCOMICA NEOCOMICA	
· — ··	46	ACHOHOSPHAERA? NEPTUNI	30	PSEUDOCERATIUM CF. P. SOLOCISPINUM	
	47	BATIOLADINIUM MICROPODUM	31	PSEUDOCERATIUM TOVEAE SP. NOV.	
	48	CALLAIOSPHAERIDIUM ASYMMETRICUM	8	KHYNCHUDINIOPSIS FIMBRIATA	
	50	GORONIFERA OGEANICA	32	SEMIUSIDINIUM SP. I	
	51	HYSTRICHODINIUM AFF. H. FURCATUM	33	SPINIFERITES SPP.	
	52	OLIGOSPHAERIDIUM POCULUM	34	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM	
· ·	53	CASSICULOSPHAERIDIA MAGNA	45	SURCULOSPHAERIDIUM AFF. S. PHOENIX	
· · -	54	DDONTOCHITINA OPERCULATA	35	TANYOSPHAERIDIUM BOLETUS	
	55	OLIGOSPHAERIDIUM? ASTERIGERUM	36	TRICHODINIUM SPEETONENSE	
	56	ACRITARCH	37	WALLODINIUM KRUTZSCHII	
3	sub	subzone		section 8	
	zon	zone			
U.Barr.	sta	ge	1	"East coast" Kuhn Ø	

I

10				
333	8 1		ar 23	SPECIES LOCATION INDEX
မ္မ္မ	1 1		Index	numbers are the columns in which species appear.
42(42)	1 1		THEFT	in Lairei
)71)70	1		NUMBER	SDRCING
1	1		Rouben	56165
	1 1	CTENIDODINIUM ELEGANTULUM	40	ACHOMOSPHAERA? NEPTUNI
	2	LEVISPHAERA CF. L. CRASSICINGULATA	41	BATIOLADINIUM LONGICORNUTUM
- · ·	3	MEIDUROGONYAULAX STOVERI	35	BATIOLADINIUM MICROPODUM
- •••	1 4	NELCHINOPSIS KOSTROHIENSIS	10	CHLAMYDOPHORELLA NYEI
	1 51	OLIGOSPHAERIDIUM CF. D. FENESTRATUM	11	CHLAMYDOPHORELLA TRABECULOSA
	1 61	TUBOTUBERELLA UNCINATA	42	CIRCULUDINIUM AFF. C. ATTADALICUM
	1 1	CIRCULODINIUM? SP. 2	12	
		PAREDDINIA SPP.	31	CIRCULODINIUM? SP. 2
	1 10	CHLAHYDOPHORELLA NYEI	14	CLEISTOSPHAERIDIUM HUGUONIOTII
	11	CHLAMYDOPHORELLA TRABECULOSA	13	CLEISTOSPHAERIDIUM? ACICULARE
	1 12	CIRCULODINIUH DISTINCTUM	36	CRIBROPERIDINIUM EDWARDSII
anca	13	CLEISTOSPHAERIDIUM? ACICULARE	1	CTENIDODINIUM ELEGANTULUM
	1 14	CLEISTOSPHAERIDIUM HUGUONIOTII	43	DESMOCYSTA PLEKTA
	1 15	EXOCHOSPHAERIDIUM PHRASMITES	44	DINGODINIUM? ALBERTII
	1 16	SUNTHULAGYSTA FASTIGIATA	32	DISCORSTA NANNA
	1 10	HYSTRICHODINIUM VOIGTT	45	ENDUSCHINTUM CAMPANULA
	1 19	HYSTRICHOSPHAERIDIUM ARBORISPINUM	57	COCHTEODINIA VILLOSA MULTIBURCATA
	20	KLEITHRIASPHAERIDIUH GORRUGATUH	16	CONVAILACYSTA FASTICIATA
	1 21	LAGENADINIUM? HEMBRANDIDIUM	17	GONYAULACYSTA HELICOIDEA HELICOIDEA
	22	LEPTODINIUM? HYALODERMOPSE	55	GONYAULACYSTA JURASSICA
	23	MUDERONGIA TETRACANTHA	8	HESLERTONIA HESLERTONENSIS
a contraction of the local division of the l	1 24	OLIGOSPHAERIDIUM? ASTERIGERUM	16	HYSTRICHODINIUM AFF. H. FURCATUM
	1 25	OLIGOSPHAERIDIUM COMPLEX	18	HYSTRICHODINIUM VOIGTII
	1 26	OLIGOSPHAERIDIUH POCULUH	19	HYSTRICHOSPHAERIDIUM ARBORISPINUM
	27	PSEUDOCERATIUM ANAPHRISSUM	17	HYSTRICHOSPHAERINA SCHINDEWOLFII
	1 28	SIRMIODINIUM GROSSII	20	KLEITHRIASPHAERIDIUM CORRUGATUM
	30	TANYASPHOEDIATUM DOLETUS	18	KLEITHRIASPHAERIDIUM EOINODES
	31	CIRCULODINIUM? SP. 3	21	LAGENADINTUM? MEMBRANOIDIUM
· — ·	32	DISCORSIA NANNA	200	LEVISPHAFRA CV I CRASSICINCILLATA
· – ·	8 33	MUDERONGIA AUSTRALIS	3	METOUROGONYAULAX STOVERT
· — ·	34	HUDERONGIA EXTENSIVA	37	MUDERONGIA AFF. M. SIMPLEX MICROPERFORATA
	35	BATIOLADINIUM MICROPODUM	33	MUDERONGIA AUSTRALIS
· —	36	CRIBROPERIDINIUM EDWARDSII	50	MUDERONGIA CF. M. TOMASZOWENSIS
·	37	MUDERONGIA AFF. M. SIMPLEX MICROPERFORATA	34	MUDERONGIA EXTENSIVA
· ====	# 38 #	OLIGOSPHAERIDIUM CF. D. PULCHERRIMUM	49	MUDERONGIA STAUROTA
·	1 39	PSEUDOCERATIUM PELLIFERUM	23	MUDERONGIA TETRACANTHA
:::=	41	BATIO ADINIUM LONGICOPHUTUM	1	OLICOSPULAERTDIUM CR. O. PUBLICADIAN
	42	CIRCULODINIUM AFF. C. ATTADAL LOUN	38	OLIGOSPHAERIDIUM CF. O. PULCUPRETNUM
	43	DESHOCYSTA PLEKTA	25	OLIGOSPHAERIDIUM COMPLEX
	# 44	DINGODINIUM? ALBERTII	51	OLIGOSPHAERIDIUM PERFORATUM PERFORATUM
• • • • ·	45	ENDOSCRINIUM CAMPANULA	26	OLIGOSPHAERTDIUM POCULUM
• • • • •	46	HYSTRICHODINIUM AFF. H. FURCATUM	24	OLIGOSPHAERIDIUM? ASTERIGERUM
	47	HYSTRICHOSPHAERINA SCHINDEWOLFII	9	PAREODINIA SPP.
	48	KLEITHRIASPHAERIDIUM EDINODES	52	PHOBEROCYSTA NEOCOMICA NEOCOMICA
	49	HUDERONGIA STAUROTA	27	PSEUDOCERATIUM ANAPHRISSUM
	51	DLIGDSPHAFRIDIUM PERFORMATIN DEPENDENTIN	53	PSEUDOCERATIUM NUDUM
	52	PHOBEROGYSTA NEOCONICA NEOCONICA	59	PSEUDUCERATIUM PELLIFERUM
· · -	. 53	PSEUDOCERATIUM NUDUM	28	STRMTODINTUM CROSSIT
	54	WALLODINIUM LUNA	29	SPINIFERITES SPP.
	55	GONYAULACYSTA JURASSICA	30	TANYOSPHAERIDIUM BOLETUS
	56	RIGAUDELLA SP.	6	TUBOTUBERELLA UNCINATA
· - ·	1 57	GOCHTEODINIA VILLOSA MULTIFURCATA	54	WALLODINIUM LUNA
1 2		subzones		section 9
1		zone		
L.Barr.		stage		"East coast" Kuhn Ø

16	s - 5			
3 3 3			1	SPECIES LOCATION INDEX
 			Index	numbers are the columns in which species appear.
4242			1.5579-0010-010-01	
60 60			INDEX	1 Second Birth Anno 16
NUA			NUMBER	SPECIES
		BATTO ADINIUM LONGICOPNUTUM	28	
	2	BOURKIDINIUN2 SP 2	1	RATIOLADINIUM LONGICODNUTUM
		ENDOSCRINIUM COMPONIU O	2	BOURKIDINTIN2 SP 2
	+	FROMEA OMPHORA	10	
	5	HUDERONGIA STAUROTA	11	CIRCULODINIUM DISTINCTUM
	6	PAREODINIA SPP.	35	CIRCULODINIUM? SP. 2
	. 7	EXOCHOSPHAERIDIUM PHRAGHITES	13	CLEISTOSPHAERIDIUM HUGUONIOTII
	. e	HESLERTONIA HESLERTONENSIS	12	CLEISTOSPHAERIDIUM? ACICULARE
	: 9	OLIGOSPHAERIDIUM CF. O. ALBERTENSE	14	DINGODINIUM? ALBERTII
	10	CHLAHYDOPHORELLA TRABECULOSA	3	ENDOSCRINIUM CAMPANULA
	. 11.	CIRCULODINIUM DISTINCTUM	7	EXOCHOSPHAERIDIUM PHRAGMITES
	12	CLEISTOSPHAERIDIUM? ACICULARE	4	FROMEA AMPHORA
	13	CLEISTOSPHAERIDIUH HUGUONIOTII	36	FROMEA SP. 1
	14	DINGODINIUM? ALBERTII	15	GONYAULACYSTA FASTIGIATA
	15	GONYAULACYSTA FASTIGIATA	37	GONYAULACYSTA HELICOIDEA HELICOIDEA
	16	HYSTRICHODINIUM VOIGTII	43	GONYAULACYSTA JURASSICA
	17	KIOKANSIUM POLYPES POLYPES	29	GONYAULACYSTA PERFOROBTUSA
	18	KLEITHRIASPHAERIDIUH EDINODES	8	HESLERTONIA HESLERTONENSIS
	19	HUDERONGIA TETRACANTHA	16	HYSTRICHODINIUM VOIGTII
-CI. Ippin	20	NELCHINDPSIS KOSTRONIENSIS	38	HYSTRICHOSPHAERIDIUM ARBORISPINUM
	21	OLIGOSPHAERIDIUH? ASTERIGERUM	17	KIOKANSTUM POLYPES POLYPES
	22	OLIGOSPHAERIDIUH COMPLEX	18	KLEITHRIASPHAERIDIUM EOINODES
	23	OLIGOSPHAERIDIUM POCULUM	31	LAGENADINIUM? MEMBRANOIDIUM
	1 241	OLIGOSPHAERIDIUM CF. D. PULCHERRIMUM	39	LEPTODINIUM? HYALODERMOPSE
amp	25	PSEUDOGERATIUM PELLIFERUM	40	MEIOUROGONYAULAX STOVERI
	26 1	SPINIFERITES SPP.	32	MUDERGONIA AUSTRALIS
	27	TANYOSPHAERIDIUH BOLETUS	5	MUDERONGIA STAUROTA
	28 1	ACHOMOSPHAERAT NEPTUNI	19	MUDERONGIA TETRACANTHA
	29 1	GONYAULACYSTA PERFOROBIUSA	20	NELCHINOPSIS KOSTROMIENSIS
		PROLINOSPHAERIDIUH PARVISPINUH		OLIGOSPHAERIDIUM CF. O. ALBERTENSE
	. 31 .	CHGENHOINION? HENBRANDIDION	24	OLIGOSPHAERIDIUM CF. U. PULCHERRIMUM
	32 1	REFURDER POT THE ANALYSIS	22	OLIGOSPHAERIDIUM COMPLEX
	34	STRMIODINIUM GROSSII	23	OLICOSPHAERIDIUM FOCULUM
	35	CIRCULODINIUM? SP. 2	6	PAREODINIA SPP.
::=	36	FROMES SP. 1	30	PROLIXOSPHAERIDIUM PARVISPINUM
	37	GONYAULACYSTA HELICOIDEA HELICOIDEA	33	PSEUDOCERATIUM ANAPHRISSUM
	38	HYSTRICHOSPHEERIDIUM ARBORISPINUM	25	PSEUDOCERATIUM PELLIFERUM
	39	LEPTODINIUM? HYALODERMOPSE	41	RHYNCHODINIOPSIS CF. R. APTIANA
	40	MEIOUROGONYAULAK STOVERI	44	RIGAUDELLA SP.
	41	RHYNCHODINIOPSIS CF. R. APTIANA	34	SIRMIODINIUM GROSSII
	42	WALLODINIUM LUNA	26	SPINIFERITES SPP.
	43	GONYAULACYSTA JURASSICA	27	TANYOSPHAERIDIUM BOLETUS
	44	RIGAUDELLA SP.	42	WALLODINIUM LUNA
1	sub	zone		section 10
	7000			
Borr	stage			"Perisphinctes-Ravine" Kuhn Ø
== 100 055 020 010 010	1			SPECIES LOCATION INDEX
---	------	--	---------	--
333333			Index r	numbers are the columns in which species appear.
333333 33333	1			
210 210 210 210 210 210			NUMBER	SPECIES
834567	1			
	1	OLIGOSPHAERIDIUH CF. C. PULCHERRIHUH	39	ACROMOSPHAERA? NEPTUNI ACRITARCH
	3	TUBOTUBERELLA UNCINATA	6	BATIOLADINIUM JAEGERI
··	4	WALLODINIUM KRUTZSCHII	31	BATIOLADINIUM LONGICORNUTUM
• • • • • • • •	5	OLIGOSPHAERIDIUM CF. O. ALBERTENSE BATIOLADINIUM JAEGERI	27	BATIOLADINIUM? EXIGUUM
	7	CHLAHYDOPHORELLA TRABECULOSA	47	CASSICULOSPHAERIDIA RETICULATA
• • • • •	8	CIRCULODINIUH DISTINGTUM	24	CHLAMYDOPHORELLA TRABECULOSA
· · _ · · · ·	10	GLESTOSPHAERIDIUM? ACICULARE CRIBROPERIDINIUM EDWARDSII	20	CIRCULODINIUM AFF. C. ATTADALICUM
· ·— · — ·	11	EXOCHOSPHAERIDIUM PHRAGMITES	8	CIRCULODINIUM DISTINCTUM
••	12	GONYAULAGYSTA FASTIGIATA	48	CLEISTOSPHAERIDIUM HUGUONIOTII CLESTOSPHAERIDIUM? ACTCULARE
	14	KIOKANSIUM POLYPES POLYPES	11	CORONIFERA OCEANICA
· · · — · · ·	15	LEVISPHAERA CF. L. CRASSICINGULATA	10	CRIBROPERIDINIUM EDWARDSII
	16	MUDERONGIA TETRACANTHA	26	CTENIDODINIUM? AFF. C. CORNOTUM CTENIDODINIUM ELEGANTULUM
· · · · · · · ·	18	OLIGOSPHAERIDIUM COMPLEX	32	DINGODINIUM? ALBERTII
· · · · ·	19	PSEUDOCERATIUM ANAPHRISSUM	40	ENDOSCRINIUM CAMPANULA
	20	CIRCULODINIUM AFF. C. ATTADALICUM	56	EXOCHOSPHAERIDIUM PHRAGMITES FLORENTINIA MANTELLII/COOKSONIAE groud
	22	SENTUSIDINIUM SP. 1	12	CONYAULACYSTA FASTIGIATA
· · · · — ·	23	SIRMIODINIUM GROSSII	29	GONYAULACYSTA HELICOIDEA HELICOIDEA
•••=	24	CHLAMYDOPHORELLA NYEI	63	GONYAULACYSTA JURASSICA
	26	GRIBROPERIDINIUM? AFF. C. CORNUTUM	53	HYSTRICHODINIUM AFF. H. FURCATUM
· · · · —	27	BATIOLADINIUM? EXIGUUM	54	HYSTRICHODINIUM VOIGTII
— ····	28	BATIOLADINIUM MICROPODUM	13	HYSTRICHOSPHAERIDIUM ARBORISPINUM
	30	MUDERONGIA CF. H. TOMASZOWENSIS	14	KIOKANSIUM POLYPES POLYPES
	31	BATIOLADINIUM LONGICORNUTUM	33	KLEITHRIASPHAERIDIUM EOINODES
	32	DINGODINIUM? ALBERTII	57	LAGENADINIUM? MEMBRANOIDIUM
	33	KLEITHRIASPHAERIDIUM EDINODES MUDERONGIA AFF. M. SIMPLEX MICROPERFORATA	15	LEVISPHAERA CF. L. CRASSICINGULATA
_	35	PSEUDOCERATIUN PELLIFERUM	34	MUDERONGIA AFF. M. SIMPLEX MICROPERFORATA
<u> </u>	36	SPINIFERITES SPP.	30	MUDERONGIA CF. M. TOMASZOWENSIS
<u> </u>	30	DLIGOSPHAERIDIUM CF. O. FENESTRATUM	49	ODONTOCHITINA OPERCULATA
	39	ACHOMOSPHAERA? NEPTUNI	5	OLIGOSPHAERIDIUM CF. O. ALBERTENSE
 .	40	ENDOSCRINIUM CAMPANULA	38	OLIGOSPHAERIDIUM CF. O. FENESTRATUM
	41	PHOBEROGYSTA NEOCOMICA NEOCOMICA PSEUDOCERATIUM TOVERE SP. NOV.	18	OLIGOSPHAERIDIUM COMPLEX
	43	SURGULOSPHAERIDIUM AFF. S. PHOENIX	17	OLIGOSPHAERIDIUM? ASTERIGERUM
	44	CORONIFERA OCEANICA	21	PAREODINIA SPP.
	45	PSEUDOCERATIUM NUDUM TANYOSPHAERIDIUM BOLETUS	11	PHOBEROCYSTA NEOCOMICA NEOCOMICA PSEUDOCERATIUM ANAPHRISSUM
	47	CASSICULOSPHAERIDIA RETICULATA	50	PSEUDOCERATIUM CF. P. SOLOCISPINUM
·····	48	CLEISTOSPHAERIDIUM HUGUONIOTII	45	PSEUDOCERATIUM NUDUM
• • • • • • • • • • • • • • • • • • • •	50	PSEUDOCERATIUM CF. P. SOLOCISPINUM	35	PSEUDOCERATIUM PELLIFERUM PSEUDOCERATIUM TOVEAE SP NOV
	51	HYSTRICHOSPHAERINA SCHINDEWOLFII	64	RIGAUDELLA SP.
······································	52	LEPTODINIUM' HYALODERHOPSE	22	SENTUSIDINIUM SP. 1
— ··· —	54	HYSTRICHODINIUM VOIGTII	58	SENTUSIDINIUM SP. 2
	55	GTENIDODINIUN ELEGANTULUM	36	SPINIFERITES SPP.
• • • • • •	56	FLORENTINIA MANTELLII/CODKSONIAE group	2	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM
· — -···	57	SENTUSIDINIUM SP. 2	59	SUBTILISPHAERA PERLUCIDA
	59	SUBTILISPHAERA PERLUCIDA	37	SYSTAMATOPHORA AFF. S. CRETACEA
·-· - ··	60	TRICHODINIUM SPEETONENSE	46	TANYOSPHAERIDIUM BOLETUS
	61	ACRITARCH	60	TRICHODINIUM SPRETONENSE
	63	GONYAULACYSTA JURASSICA	62	TUBOTUBERELLA SP. TUBOTUBERELLA UNCINATA
.=.=: ;	64	RIGAUDELLA SP.	4	WALLODINIUM KRUTZSCILL
2	subz	one	-	section 11
1	zone)		
L.Barremian	stag	e	1	N of Kap Hamburg Kuhn Ø

-4		~
- 1	1	~
	-	9
-		-

SN N N N N N N N N N N N N N N N N N N	
333333 Index numbers are the columns in which spe 3033333 Index numbers are the columns in which spe 3033333 Index numbers are the columns in which spe 3033333 Index numbers are the columns in which spe 3033333 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index numbers are the columns in which spe 304000 Index num	
S S S S S INDEX S S S S S S S INDEX S S S S S S S S S S S S S S S S S S S	cies appear.
30 50 <td< td=""><td>States and a state of the state</td></td<>	States and a state of the state
NUMBER SPECIES	
-3 1 SIRMIODINIUM GROSSII 21 BATIOLADINIUM JAEGERI -3 2 CIRCULODINIUM GROSSII 18 BATIOLADINIUM MICROPODUM -3 3 OLIGOSPMAERIDIUM PERFORATUM 18 BATIOLADINIUM MICROPODUM -3 3 OLIGOSPMAERIDIUM PERFORATUM 19 CANNINGIA RETICULATA -3 4 LEPTODINIUM GANCELLATUM 29 CAUCA PARVA -3 5 CHLAMYDOPHORELLA TRABECULOSA 5 CHLAMYDOPHORELLA TRABECULOSA -3 6 ELLIPSOIDICTYUM IMPERFECTUM 22 CIRCULODINIUM BREVISPINOSUM -3 7 EXOCHOSPHAERIDIUM PHRAGHITES 22 CLEISTOSPHAERIDIUM? ACICULARE -3 9 OLIGOSPHAERIDIUM COMPLEX 6 ELLIPSOIDICTYUM IMPERFECTUM -3 9 OLIGOSPHAERIDIUM CF. 0. PULCHERRIHUM 7 EXOCHOSPHAERIDIUM PREACHIES -3 10 OLIGOSPHAERIDIUM CF. 0. PULCHERRIHUM 7 EXOCHOSPHAERIDIUM PRAGMITES -3 11 PALAEOPERIDIUM CRETACEUM 25 FROMEA AMPHORA -3 12 VESPEROPSIS MAYI 30 KIOKANSIUM POLYPES POLYPES	
- · · · · · · · · · · · · · · · · · · ·	1
••• 3 OLIGOSPHAERIDIUM PERFORATUM PERFORATUM 19 CANNINGIA RETICULATA ••• • • LEPTODINIUM GANCELLATUM 29 CAUCA PARVA ••• • • • • CHLAMYDOPHORELLA TRABECULOSA 5 CHLAMYDOPHORELLA TRABECULOSA ••• • • • • CUCA PARVA ••• • • • CHLAMYDOPHORELLA TRABECULOSA CHLAMYDOPHORELLA TRABECULOSA ••• • • • • CUCLAMYDOPHORELLA TRABECULOSA ••• • • • • CULLAMYDOPHORELLA CULLAMYDOPHORELLA ••• • • • • • • • • • • • • •	
S GHLAHYDOPHORELLA TRABECULOSA 5 GHLAHYDOPHORELLA TRABECULOSA S GHLAHYDOPHORELLA TRABECULOSA 5 CHLAHYDOPHORELLA TRABECULOSA S GHLAHYDOPHORELLA TRABECULOSA 2 CIRCULODINIUM BREVISPINOSUM S GELIPSOIDICTYUM IMPERFECTUM 2 CIRCULODINIUM BREVISPINOSUM S CONSPHAERIOIUM PHRAGHITES 22 CLEISTOSPHAKRIDIUM? ACICULARE B ODONTOCHITINA OPERCULATA 20 CORONIFERA OCEANICA S OLIGOSPHAERIDIUM COMPLEX 6 ELLIPSOIDICTYUM IMPERFECTUM S OLIGOSPHAERIDIUM CR.O. PULCHERRIHUM 7 EXOCHOSPHAERIDIUM PRAGMITES S OLIGOSPHAERIDIUM CRETACEUM 25 FROMEA AMPHORA S VESPEROPSIS MAVI 30 KIOKANSIUM POLYPES POLYPES S I.2 VESPEROPSIS MAVI 30 KIOKANSIUM POLYPES POLYPES S I.3 TANYOSPHAERIDIUM BOLETUS 4 LEPTODINTUM CANCELLATUM S OLIGOSPHAERIDIUM KRUTZSCHII 16 LEPTODINTUM? HYALOBERMOPSE S OLIGOSPHAERIDIUM KRUTZSCHII 16 LEPTODINTUM? HYALOBERMOPSE	
2 CLEISTOSPHAERIDIUM ? ACICULARE 3 0 dontochitina operculata 20 CORONIFERA OCEANICA 4 0 dligosphaeridium complex 6 B CLIPSOIDICTYUM IMPERFECTUM 4 0 dligosphaeridium cf. 0. Pulcherrimum 7 EXOCHOSPHAERIDIUM PHRAGMITES 5 0 dligosphaeridium cf. 0. Pulcherrimum 7 EXOCHOSPHAERIDIUM PHRAGMITES 6 11 Palaeoperidinum cretaceum 7 EXOCHOSPHAERIDIUM PHRAGMITES 12 vesperopsis Havi 30 KIOKANSIUM POLYPES POLYPES 13 TANYOSPHAERIDIUM BOLETUS 4 LEPTODINIUM CANCELLATUM 14 Haldodinium KRUTZSCHII 16 LEPTODINIUM PHRAGMOSE 15 0 ligosphaeridium krutzschii 16 LEPTODINIUM PHRAGMOSE	
B ODONTOCHITINA OPERCULATA 20 CORONIFERA OCEANICA B OLIGOSPHAERIDIUH COMPLEX 6 ELLIPSOIDICTYUM IMPERFECTUM CTITIC ID OLIGOSPHAERIDIUH COMPLEX 7 EXOCHOSPHAERIDIUM PRAGMITES CTITIC ID OLIGOSPHAERIDIUH CRETACEUH 7 EXOCHOSPHAERIDIUM PRAGMITES ID ID PLAEOPERIDINTUH CRETACEUH 7 EXOCHOSPHAERIDIUM PRAGMITES ID ID PLAEOPERIDINTUH CRETACEUH 7 EXOCHOSPHAERIDIUM PRAGMITES ID ID PLAEOPERIDINTUH CRETACEUH 7 EXOCHOSPHAERIDIUM PRAGMITES ID ID VESPEROPSIS HAYI 30 KIOKANSIUM POLYPES POLYPES ID ID ID ID ID ID ID ID ID I	
Image: Control of the second secon	
CITICE 10 OLIGOSPHAERIDIUM CF. O. PULCHERRIHUM 7 EXOCHOSPHAERIDIUM PHRAGMITES CITICE 11 PALAEOPERIDINIUM CRETACEUM 25 FROMEA AMPHORA CITICE 12 VESPEROPSIS HAVI 30 KIOKANSIUM POLYPES POLYPES	
CTTTLE 11 PALAEOPERIDINIUM CRETACEUM 25 FROMEA AMPHORA 12 UESPEROPSIS MAVI 30 KIOKANSIUM POLYPES POLYPES	
12: UESPEROPSIS HAVI 30 KIOKANSLUM POLYPES POLYPES	
- 13 TANYOSPHAERIDIUH BOLETUS 4 LEPTODINIUM CANCELLATUM - 14 HALLODINIUH KRUTZSCHII 16 LEPTODINIUM? HYALODERMOPSE - 15 0LIGSPHAERIDIUH GE, D. TOTUH 8 0D007CUHTWA OPPRUHATA	
+ + HALLODINIUM REUTZSCHII 16 LEPTODINIUM? HYALODERMOPSE	
STREET 15 01 LEOSPHEERIDIUM CE. D. TOTUM 8 ODONTOCHITINA OPPRCULATA	
10 OLIGOSPHAERIDIUM CF. O. PULCHERRIMU	M .
· · · · · · · · · · · · · · · · · · ·	
9 OLIGOSPHAERIDIUM COMPLEX	011022
•• IDI CANNINGIA RETICULATA 3 OLIGOSPHAERIDIUM PERFORATUM PERFORAT	TUM
26 OLIGOSPHAERIDIUM SP. 1	
······· 21 BATIOLADINIUM JAEGERI II PALAEOPERIDINIUM CRETACEUM	
······································	
24 SPINIFERITES SPP. 28 SENONIASPHAERA MICRORETICULATA	
23 SENTUSIDINUM SP. 1	1
I SIRMIODINIUM GROSSII	
······································	
••••••••••••••••••••••••••••••••••••••	1
31 SURCULOSPHAERIDIUM AFF. S. PHOENIX	
· · · · · · · · · · · · · · · · · · ·	
· · · · · 31 SURCULOSPHAERIDIUM AFF. S. PHOENIX 12 VESPEROPSIS MAYI	
· · · · · · · · · · · · · · · · · · ·	
2 3 subzones section 12	
III zone OW of Kan Date Water Dat	
L.Apt. U.Apt. stages Sw of Kap Berlin Wollaston Fl.	

2284 2263 2263 1151 1151 1151 1151 1151 1151 1151 11				CONCINCT LOCATION THREE
3333333333333			Index	numbers are the columns in which species appe
				amoore are the columns in miles species appen
555555555555555555555555555555555555555			INDEX	
85 86 80 80 80 80 80 80 80 80 80 80 80 80 80	88		NUMBER	SPECIES
I I				
	• 1 1	SURCULOSPHAERIDIUM AFF. S. PHOENIX	55	ACRITARCH
	2	CIRCULODINIUM? SP. 3	47	APTEODINIUM RETICULATUM
— · — · — ······		NYKTEPICYSTAL UITPEA	29	CANNINGTA RETICULATA
— · — · ¹ ·····	·	OLIGOSPHAERIDIUM? ASTERIGERUM	36	CANNINGINOPSIS CF. C. COLLIVERI
	6	PSEUDOCERATIUM CF. P. RETUSUM	26	CARPODINIUM GRANULATUM
····		LEPTODINIUM? HYALODERMOPSE	40	CAUCA PARVA
		CHLANYDOPHORELLA TRABECULOSA	8	CHLAMYDOPHORELLA TRABECULOSA
	9	CIRCULODINIUN BREVISPINOSUN	9	CIRCULODINIUM BREVISPINOSUM
	10	LEVISPHAERA CF. L. CRASSICINGULATA	48	CIRCULODINIUM DISTINCTUM
		ODONTOCHITINA OPERCULATA	30	CIRCULODINIUM? SP. 2
		PALAFOPERIDION CONFLEX	31	CLEISTOSPHAERIDIUM HUGBONIOTII
—···—···	- 114	SENTUSIDINIUM SP. 1	33	CLEISTOSPHAERIDIUM? ACICULARE
- ·		VESPEROPSIS MAYI	45	DESMOCYSTA PLEKTA
· - · · · · · · · · ·	. 16	SENTUSIDINIUM VERRUCOSUM	20	DINGODINIUM? ALBERTII
· ········	• 17	SUBTILISPHAERA PERLUCIDA	27	ELLIPSOIDICTYUM IMPERFECTUM
· · · · · · · · · · · · · ·	• 18	OLIGOSPHAERIDIUM CF. D. TOTUM	34	EXOCHOSPHAERIDIUM PHRAGMITES
· - ···································	• 19	OLIGOSPHAERIDIUM PERFORATUM PERFORATUM	50	FROMEA FRAGILIS
	. 50	DINGODINIUM? ALBERTII	38	GONYAULACYSTA AFF. G. CASSIDATA
	21	PAREODINIA SPP.	46	HAPSOCYSTA? BENTEAE SP. NOV.
		TANYOSPHAEPIDIUM BOLETUS	28	KIOKANSIUM POLYPES POLYPES
· · · · · · · · · · · · · · · · · · ·	- 24	BATIOLADINIUM JAEGERI	43	LAGENADINIUM? MEMBRANOIDIUM
· · _ · _ · _ · _ · .	- 25	LEPTODINIUH CANCELLATUM	25	LEPTODINIUM CANCELLATUM
· · · · — · · · · · · · · · · ·	· 26	CARPODINIUM GRANULATUM	3	LEPTODINIUM? CF. L. DELICATUM
· · · · · ·	• 27	ELLIPSOIDICTYUM IMPERFECTUM	7	LEPTODINIUM? HYALODERMOPSE
· · · ·	- 28	KIOKANSIUM POLYPES POLYPES	10	LEVISPHAERA CF. L. CRASSICINGULATA
$ \cdot \cdot \cdot \cdot \cdot - \cdot \cdot \cdot \cdot \cdot \cdot$	• 29	CANNINGIA RETICULATA	4	NYKTERICYSTA? VITREA
	• 30	CIRCULODINIUM? SP. 2	11	ODONTOCHITINA OPERCULATA
	t <u>1</u> 31	CLEISTOSPHAERIDIUM HUGUONIOTII	41	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
	. 1 32	OLIGOSPHAERIDIUM POCULUM	18	OLIGOSPHAERIDIUM CF. O. TOTUM
	33	EXOCHOSPHAERIDIUM PHRACHITES	12	OLIGOSPHAERIDIUM COMPLEX
	35	SPINIFFRITES SPP.	32	OLIGOSPHAERIDIUM POCULUM
	. 36	CANNINGINOPSIS CF. C. COLLIVERI	42	OLIGOSPHAERIDIUM SP. 1
	. 37	SENONIASPHAERA MICRORETICULATA	5	OLIGOSPHAERIDIUM? ASTERIGERUM
	. 30	GONYAULACYSTA AFF. G. CASSIDATA	13	PALAEOPERIDINIUM CRETACEUM
	. 39	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM	21	PAREODINIA SPP.
· · · · · · · · · · · · · · · · ·	. 40	CAUCA PARVA	6	PSEUDOCERATIUM CF. P. RETUSUM
· · · · · · · · · · · · · · · · · · ·	- +1	OLIGOSPHAERIDIUH CF. O. PULCHERRIHUM	44	PSEUDOCERATIUM EISENACKII
· · · · · · · · · · · · · · · · · · ·	42	OLIGOSPHAERIDIUM SP. 1	52	SENDICERATION POLYMORPHUM SENONIASPHARDA MICROBETICULATA
	- 43	PSEUDOCEPATIUM EISENACHI	14	SENTISTOTITUM SP. 1
	- 45	DESMOCYSTA PLEKTA	53	SENTUSIDINIUM SP. 2
	- +6	HAPSOCYSTA? BENTERE SP. NOV.	16	SENTUSIDINIUM VERRUCOSUM
	J . 47	APTEODINIUM RETICULATUM	22	SIRMIODINIUM GROSSII
 		CIRCULODINIUM DISTINCTUM	35	SPINIFERITES SPP.
********	+ 9	VESPEROPSIS LONGICORNIS	39	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM
	- 50	FROMEA FRAGILIS	17	SUBTILISPHAERA PERLUCIDA
	- 51	KLEITHRIASPHAERIDIUH EDINODES	1	SURCULOSPHAERIDIUM AFF. S. PHOENIX
	52	SENTIGIOINTUM SP. 2	23	TANYOSPHAERIDIUM BOLETUS
	- 54	TUBOTUBERELLA SP.	54	IUDOTOBERBELA SP.
	- 55	ACRITARCH	49	VESPEROPSIS LONGICORNIS
	. 56	ULVELLA NANNAE	15	VESPEROPSIS MAYI
	A 132 A 1	n hate ever through Milli The Alt 1959 Hellow	0.000	
2 3	4 sub	ozones		section 13
III	zor	ne		
L.Apt. U.Apt. L.A	lb. sta	ges	1	SW of Kap Berlin Wollaston Fl.
 Second and the state of the second state of the secon	CARDENAL CONTRACTOR			

400 1555	8	
333333		SPECIES LOCATION INDEX
		index numbers are the columns in which species appear.
12121		TNDEX
33335		NUMBER SPECIES
··	1 BATIOLADINIUM JAEGERI	61 PHAIR FROM LEAF
	2 WALLODINIUM KRUTZSCHII	24 ACHOMOSPHAERA? NEPTUNI
	3 FROMEA AMPHORA	62 ACRITARCH
······································	4 LEPTODINIUM? HYALODERHOPSE	25 APTEODINIUM RETICULATUM
	5 PSEUDOCERATIUM TOVEAE SP. NOV.	26 ATOPODINIUM HAROMENSE D BATTOLADINIUM LARGERI
		27 BATIOLADINIUM LONGICORNUTUM
	8 OLIGOSPHAERIDIUM COMPLEX	58 BATIOLADINIUM MICROPODUM
	9 EXIGUISPHAERA PLECTILIS	16 CALLAIOSPHAERIDIUM ASYMMETRICUM
· — · · · ·	10 GONYAULACYSTA HELICOIDEA HELICOIDEA	28 CHLAMYDOPHORELLA TRABECULOSA
	11 HYSTRICHODINIUH VOIGTII	38 CIRCULODINIUM AFF. C. ATTADALICUM
	12 OLIGOSPHAERIDIUM CF. O. FENESTRATUM	39 CIRCULODINIUM DISTINCTUM
	13 OLIGOSPHAERIDIUM PERFORATUM PERFORATUM	1 17 CIRCULODINIUM? SP. 4
	14 PSEUDOCEPATIUM PELLIEERUM	7 CLEISTOSPHAERIDIUM ACTCULARE
	16 GALLAIOSPHAERIDIUM ASYMMETRICUM	60 CTENIDODINIUM ELEGANTULUM
·	17 CIRCULODINIUM SP. 4	50 DESMOCYSTA PLEKTA
· — · · ·	18 GLEISTOSPHAERIDIUM HUHUONIOTII	47 DINGODINIUM? ABLERTII
·-· - ··	19 DISCORSIA NANNA	19 DISCORSIA NANNA
••••	20 HYSTRICHOSPHAERIDIUM ARBORISPINUM	51 ELLIPSOIDICTYUM IMPERFECTUM
	21 LEPTODINIUM? HADRUM	9 EXIGUISPHAERA PLECTILIS
	22 SENTUSIDINIUH SP. 1	40 EXOCHOSPHAERIDIUM PHRAGMITES
	24 ACHONOSPHEERB? NEPTUNI	3 FROMEA AMPLIORA
· — · – ·	25 APTEODINIUM RETICULATUM	10 GONYAULACYSTA HELICOIDEA HELICOIDEA
· — · — · · ·	26 ATOPODINIUM HAROHENSE	49 HESLERTONIA HESLERTONENSIS
· · · ·	27 BATIOLADINIUH LONGICORNUTUM	44 HYSTRICHODINIUM AFF. H. FURCATUM
· — ·	28 CHLANYDOPHORELLA TRABECULOSA	45 HYSTRICHODINIUM RAMOIDES
· — ·	29 HYSTRICHOSPHAERINA SCHINDEWOLFII	11 HYSTRICHODINIUM VOIGTII
	30 LEVISPHAERA CF. L. CRASSICINGULATA	20 HYSTRICHOSPHAERIDIUM ARBORISPINUM
	31 MUDERONGIA TETRACANTHA	29 HYSTRICHOSPHAERINA SCHINDEWOLFII
	32 OLIGOSPHAERIDIUM CE O PULCHERRIHUM	41 KIOKANSIUM POLYPES POLYPES 52 KIETTHRTASPHAERIDIUM FOINODES
	34 PALAEDPERIDINIUM CRETACEUM	56 LAGENADINIUM? MEMBRANOIDIUM
· — · — ·	35 SENTUSIOINIUM SP. 2	21 LEPTODINIUM? HADRUM
· • · • · · · · · · · · · · · · · · · ·	36 STIPHROSPHAERIDIUM CF. S. ANTHOPHORUH	4 LEPTODINIUM? HYALODERMOPSE
· — · — ·	37 TRICHODINIUM SPEETONENSE	30 LEVISPHAERA CF. L. CRASSICINGULATA
•	38 CIRCULODINIUM AFF. C. ATTADALICUM	31 MUDERONG LA TETRACANTHA
• CC3000 • CC3	39 CIRCULODINIUM DISTINCTUM	53 ODONTOCILITINA OPERCULATA
	40 EXOCHOSPHAERIDIUM PHRAGMITES	12 OLIGOSPHAERIDIUM CF. O. FENESTRATUM
	41 KIOKANSION POLYPES POLYPES	8 OLIGOSPHAERIDIUM COMPLEX
	43 SPINIFERITES SPP.	13 OLIGOSPHAERIDIUM PERFORATUM PERFORATUM
· · · · · ·	44 HYSTRICHODINIUM AFF. H. FURCATUM	32 OLIGOSPHAERIDIUM POCULUM
	45 HYSTRICHODINIUM RAMOIDES	54 OLIGOSPHAERIDIUM? ASTERIGERUM
••••	46 RHYNCHODINIOPSIS CF. R. APTIANA	34 PALAEOPERIDINIUM CRETACEUM
· · — · · ·	47 DINGODINIUM? ABLERTII	55 PARKODINIA SPP.
· · — · · ·	48 FLORENTINIA MANTELLII/COOKSONIAE group	> 14 PSEUDOCERATIUM EISENACKII
	49 HESLERTONIA HESLERTONENSIS	6 PSRUDOCENATIUM NUDUM
	51 ELLIPSOIDICTYUM IMPERFECTUM	5 PSEUDOCERATIUM TOVEAE SP NOV
· · · ·	52 KLEITHRIASPHAERIDIUM EDINODES	46 RHYNCHODINIOPSIS CF. R. APTIANA
· · — · ·	53 0DONTOCHITINA OPERCULATA	22 SENTUSIDINIUM SP. 1
· · — ·	54 OLIGOSPHAERIDIUM? ASTERIGERUM	35 SENTUSIDINIUM SP. 2
• • • • • • • • • •	55 PAREODINIA SPP.	42 STRMIODINIUM GROSSII
· · · — · · · j	56 LAGENADINIUM? MEMBRANDIDIUM	43 SPINIFERITES SPP.
· · · —	57 SURCULOSPHAERIDIUM AFF. S. PHOENIX	36 STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM
	SO BATTOLADINIUM MICROPODUM	59 SUBTILISPHAKRA PERLUCIDA 57 SUBCHLOSPHARDIDIUM APP C. DROPHLY
	60 GTENIDODINIUM ELEGANTULUM	23 TANYOSPHARRIDIUM AFF. S. PHOKNEX 23 TANYOSPHARRIDIUM ROLPTUS
	61 HAIR FROM LEAF	37 TRICHODINIUM SPEETONENSE
· · · — ·	62 ACRITARCH	2 WALLODINIUM KRUTZSCHII
3	subzone	section 14
1	zone	
II Born	ataaa	 Palnatokes Bjerg Wollaston FI.
U.barr.	stage	

2	10 1	6 9			
3	3			ana	SPECIES LOCATION INDEX
ω	ω :			Index	numbers are the columns in which species appear.
515	51.	: :		THEFT	
26	27			TUNDER	SPECTES
1.1				NUMBER	SFECTES
-		1	CALLAIDSPHAERIDIUH ASYMMETRICUM	17	ACHOMOSPHAERA? NEPTUNI
-	- 1	2	CASSICULOSPHAERIDIA RETICULATA	55	ACRITARCH
-	•	3	CIRCULODINIUM? SP. 3	36	APTEODINIUM RETICULATUM
-	•	4 0	CLEISTOSPHAERIDIUH HUGUONIOTII	37	ATOPODINIUM HAROMENSE
-	•	5	CORONIFERA OCEANICA	18	BATIOLADINIUM LONGICORNUTUM
-	•	6 .	CTENIDODINIUM ELEGANTULUM	38	BATIOLADINIUM MICROPODUM
	•	7	GONYAULACYSTA HELICOIDEA HELICOIDEA	1	CALLAIOSPHAERIDIUM ASYMMETRICUM
		8.	KIDKANSIUH POLYPES POLYPES	2	CASSICULOSPHAERIDIA RETICULATA
		2	KLEITHRIASPHAERIDIUM CORRUGATUM	19	CHLAMYDOPHORELLA TRABECULOSA
		10	REETHRIASPHAERIDION EDINODES	20	CIRCULODINIUM DISTINCTUM
~		12	PALAFOPERIOINIUM OPETACEUM	22	CIRCULODINIUM? SP. 2
	-	13	SENTIISIOINIUM SP. 1	3	CIRCULODINIUM? SP. 3
-	•	14	SURCULOSPHAERIDIUM AFF. S. PHOENIX	4	CLEISTOSPHAERIDIUM HUGUONIOTII
-	•	15	TRICHODINIUM SPEETONENSE	23	CLEISTOSPHAERIDIUM? ACICULARE
-	•	16	WALLODINIUM LUNA	5	CORONIFERA OCEANICA
-	- 6	17	ACHOMOSPHAERA? NEPTUN1	24	CRIBROPERIDINIUM EDWARDSII
-	-	18	BATIOLADINIUH LONGICORNUTUM	39	CRIBROPERIDINIUM? AFF. C. CORNUTUM
-	_	19	CHLANYDOPHORELLA TRABECULOSA	6	CTENIDODINIUM ELEGANTULUM
Œ	55	20	CIRCULODINIUM AFF. C. ATTADALICUM	25	DINGODINIUM? ALBERTII
		21	CIRCULODINIUM DISTINCTUM	40	ENDOSCRINIUM CAMPANULA
		22	CIRCULODINIUM? SP. 2	41	EXIGUISPHAERA PLECTILIS
		23	CLEISTOSPHAERIDIUM? ACICULARE	26	EXOCHOSPHAERIDIUM PHRAGMITES
		24	CRIBROPERIDINIUM EDWARDSII	42	CONVALLACYSTA HELICOIDEA HELICOIDEA
-		20		5.6	CONVAULACISTA IUDASSICA
_		27	HESI ERTONIA HESI ERTONENSIS	27	UESI EPTONTA UESI EPTONENSTS
-	-	28	HYSTRICHOSPHAERIDIUM ARBORISPINUM	28	HYSTRICHOSPHAERIDIUM ARBORISPINUM
_	-	29	LEPTODINIUM? HYALODERMOPSE	43	HYSTRICHOSPHAERINA SCHINDEWOLFII
-	-	30	MUDERONGIA TETRACANTHA	8	KIOKANSIUM POLYPES POLYPES
-	ana i	31	OLIGOSPHAERIDIUH COMPLEX	9	KLEITHRIASPHAERIDIUM CORRUGATUM
- C		32	OLIGOSPHAERIDIUM CF. D. PULCHERRIMUM	10	KLEITHRIASPHAERIDIUM EOINODES
1.000		33	PSEUDDCERATIUM NUDUM	29	LEPTODINIUM? HYALODERMOPSE
	-	34	PSEUDOCERATIUM PELLIFERUM	44	LEVISPHAERA CF. L. CRASSICINGULATA
i cac	ann	35	SPINIFERITES SPP.	11	MUDERONGIA AUSTRALIS
•	- :	36	APTEODINIUM RETICULATUM	30	MUDEHONGIA TETRACANTHA
•		37	ATOPODINIUM HAROMENSE	45	NYKTERICYSTA? VITREA
		38	BATIOLADINIUM HIGROPODUM	32	OLICOSPHAERIDIUM CF. C. PULCHERRIMUM
		37	ENDOSCRINTUM COMPONIL O	46	OLIGOSPHAERIDIUM POCULUM
		41	EXIGUISPHAERA PLECTILIS	12	PALAEOPERIDINIUM CRETACEUM
		42	FLORENTINIA MANTELLII/COOKSONIAE GROUD	47	PHOBEROCYSTA NEOCOMICA NEOCOMICA
		43	HYSTRICHOSPHAERINA SCHINDEWOLFII	48	PSEUDOCERATIUM ANAPHRISSUM
	-	44	LEVISPHAERA CF. L. CRASSICINGULATA	33	PSEUDOCERATIUM NUDUM
	-	45	NYKTERICYSTA? VITREA	34	PSEUDOCERATIUM PELLIFERUM
	H 1	46	OLIGOSPHAERIDIUM POCULUM	49	PSEUDOCERATIUM TOVEAE SP. NOV.
•		47	PHOBEROCYSTA NEOCOMICA NEOCOMICA	50	RHYNCHODINIOPSIS FIMBRIATA
•	·•	48	PSEUDOCERATIUM ANAPHRISSUM	13	SENTUSIDINIUM SP. I
•		49	PSEUDOCERATIUM TOVEAE SP. NOV.	51	SIMMIODINIUM GROSSII
		50	CIENTODINIUM GROSSII	14	SUBCULOSPHAERIDIUM AFF S. PHOENIX
		52	SYSTEMATOPHORA AFF. S. CRETACEA	52	SYSTEMATOPHORA AFF. S. CRETACEA
		53	TANYOSPHAERIDIUM BOLETUS	53	TANYOSPHAERIDIUM BOLETUS
		54	TANYOSPHAERIDIUH SALPINX	54	TANYOSPHAERIDIUM SALPINX
		55	ACRITARCH	15	TRICHODINIUM SPEETONENSE
	- 1	56	GONYAULACYSTA JURASSICA	16	WALLODINIUM LUNA
2	3	sub	zones		section 15
1		zon	e		1116-56-57-5774 HTL 2011 12 12 12 12 12 12 12 12 12 12 12 12 1
1.0	11.5				Rødryggen Wollaston Fl.
L.B.	U.B.	sta	ges		10482400.24777724000 (11774021123201620) (11774)

- 5			
			SPECIES LOCATION INDEX
35		Index	numbers are the columns in which species appear
5 5 5			
2 3		INDEX	
		NUMBER	SPEC1ES
	1	24	ACHOMOSPHARRA2 NEDTINI
		7	
<u> </u>	2 KIONANSION POLIFES PULIPES	25	CASSICILLOSDIARDIDIA DETICULATA
		2.5	
	SENTICIONAL SE I	26	CIRCULODINIUM AFF C ATTADALICUM
	A SENTISIOINIUM SP. 2	27	CIRCULODINIUM DISTINCTIM
	, 7 BHITOLADINION LONGICORNOTON	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CRIDBODUDTOTATINE EDWADDELL
			CRIMOPERIDIATON EDWARDSTT
	Second Se	20	CRIDIOLENIDIATON: AFF. C. CONNETON
	10 CRIBROPERIDINION AFF. C. CORNUTOM	20	DINCODINIUM ELEGANIULUM
	II CRIBROPERIDINION EDWARDSII	12	DINGODINION? ALDENILI
	12 DINGOOINIUR, ALBERTII	29	ENDOSCRINIUM CAMPANULA
	13 EXOCHOSPHAERIOION PHRAGHITES	13	PLODENTIAL MANTELLIL (COORCONLAP
	14" FLORENTINIH HHNIELDII/COUKSUNIHE GROUP	14	PLOKENTINIA MANTELLII/COOKSONIAE group
	15 HYSTRICHOSPHMERIDIUM ARBORISPINUM	1	GONYAULACYSTA FASTIGIATA
	16 KLEITHRIASPHHENIDIUH EDINODES	30	
	17 HUDERONGIA AFF. H. SIAPLEX HIGROPERFORATA	15	HYSTRICHOSPHAERIDIUM ARBORISPINUM
	I 18 HUDERONGIA TETRAGANTHA	2	KIOKANSTUM POLYPES POLYPES
—	19 OLIGOSPHAERIDIUM ASTERIGERUM	3	KLEITHRIASPHARRIDIUM CORRUGATUM
	20 OCTOOSPHAERIDIOH COMPLEX	16	KLEITHRIASPHAERIDIUM EOINODES
	21 PSEUDOCERATION ANAPARISSON	31	LAGENADINTOM? MEMBRANOIDIOM
	22 PSEUDOGERATION PELLIPERON	32	LEVISPHARKA CF. L. CRASSICINGULATA
	23 SPINIFERITES SPP.	11	MUDERONGIA AFF. M. SIMPLEX MICROPERFORATA
	24 HCHOHOSPHHERH NEFTUNI	10	AUDERONGIA TETRACANTHA
	25 CHSSICOLOSPHMERIDIA RETIGOLATA	33	OLIGOSPHAERIDIOM CF. O. ALBERTENSE
	26 CIRCULOUNION AFF. C. HITHDALICON	1	OLIGOSPHAERIDIUM CF. U. FENESTRATUM
	27 GIRCULDDINION DISTINCTON	31	OLIGOSPHAERIDIUM CF. O. FULCHERRIMUM
	28 CTENIDODINIUM ELEGANTULUM	20	OLIGOSPHAERIDIUM COMPLEX
	29 ENDOSCRINION CHAPHNOLA	19	ULIGUSTHARRIDIUM? ASTERIGERUM
-	30 HYSTRICHODINIUH VOIGTII	35	PHOBEROCYSTA NEOCOMICA NEOCOMICA
·	31 LAGENADINIUM * MEMBRANOIDIUM	21	PSEUDOCERATIUM ANAPHRISSUM
	32 LEVISPHAERA CF. L. GRASSICINGULATA	36	PSEUDOCERATIUM NUDUM
	33 OLIGOSPHAERIDIUM CF. O. ALBERTENSE	22	PSEUDOCERATIUM PELLIFERUM
	34 DLIGOSPHAERIDIUM CF. O. PULCHERRIMUM	37	PSEUDOCERATIUM TOVEAE SP. NOV.
	35 PHOBEROCYSTA NEOCOMICA NEOCOMICA	5	SENTUSIDINIUM SP. 1
· PP :	36 PSEUDOCERATIUM NUDUM	6	SENTUSIDINIUM SP. Z
	37 PSEUDOCERATIUM TOVEAE SP. NOV.	38	STRATUUTINTUM GROSSII
	38 SIRMIODINIUM GROSSII	23	SPINIFERITES SPP.
	39 STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM	39	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM
	40 SURCULOSPHAERIDIUM AFF. S. PHOENIX	10	SURCULOSPHAERIDIUM AFF. S. PHOENIX
	41 TANYOSPHAERIDIUM BOLETUS	41	TANYOSPHAKHIDIUM BOLETUS
· – ·	42 TRICHODINIUM SPEETONENSE	42	TRICHODINIUM SPEETONENSE
2 3	subzones		section 16
1	zone		
L.B.U.B.	stages	1	Rødryggen Wollaston Fl.

040 040 030 020	065	120			SPECIES LOCATION INDEX
33333	333	333		Index	numbers are the columns in which species appear.
842166 842164 842163 842162 842161	121168	342174 342172		INDEX NUMBE	R SPECIES
<u> </u>		· · ·	1 ACHONOSPHAERAY NEPTUNI	84	PHATH FROM LEAF
		:::	I 2 RHYNCHODINIOPSIS CF. R. APTIANA I 3 BATIOLADINIUM LONGICORNUTUM	81	ACHOMOSPHAERA? NEPTUN I ACH I TARCH
	• • •	· · ·	4 SYSTEMATOPHORA AFF. S. CRETACEA	5	APTEODINIUM RETICULATUM
		11:1	" 5" APTEODINIUM RETIGULATUM " 6" Discorsia Nanna	39	ATOPODINTUM HAROMENSE BATIOLADINTUM JAKGERT
			7 PSEUDDCERATIUN TOVEAE SP. NOV.	3	BATIOLADINIUM LONGICORNUTUM
	:	:::	B SURCULOSPHAERIDIUM AFF. S. PHOENIX	12	BATIOLADINIUM MICROPODUM BATIOLADINIUM? EXIGUUM
			10 HUDERONGIA TETRAGANTHA	13	BATIOLADINIUM? PELLIFERUM
		:::	11 TRICHODINIUM SPEETONENSE	56	CASSICULOSPHAERIDIA RETICULATA
<u> </u>			13 BATIOLADINIUM? PELLIFERUM	32	CHILAMYDOPHORELLA TRABECULOSA
		1:1::	14 GIRCULODINIUM AFF. C. ATTADALICUM	14	CIRCULODINIUM AFF. C. ATTADALICUM CIRCULODINIUM BREVISPINOSUM
			16 GONYAULACYSTA HELICOIDEA HELICOIDEA	21	CIRCULODINIUM DISTINCTUM
:_:		1:1::	17 HYSTRICHOSPHAERINA SCHINDEWOLFI1 18 0LIGOSPHAERIDIUH POCULUM	70	CIRCULODINIUM? SP. 2 CLEISTOSPHAERIDIUM HUGUONIOTII
			19 SIRHIDDINIUM GROSSII	22	CLEISTOSPHAERIDIUM? ACICULARE
	• •		20 SENTUSIDINIUM VERRUCOSUM	37	CORONIFERA OCEANICA CRIBROPERIDINIUM EDWARDSII
		H-1	22 GLEISTOSPHAERIDIUH? ACICULARE	23	DESMOCYSTA PLEKTA
		曰:::	23 DESMOCYSTA PLEKTA	12	DINGODINIUM? ALBERTII
	_	H	25 KIOKANSIUM POLYPES POLYPES	33	ELLIPSOIDICTYUM IMPERFECTUM
		H::	26 NYKTERICYSTA) VITREA	63	ENDOSCRINIUM CAMPANULA
·		<u> </u>	28 BATIOLADINIUM JAEGERI	29	EXOCHOSPHAERIDIUM PHRAGMITES
			29 EXOCHOSPHAERIDIUN PHRAGHITES	15	FLORENTINIA MANTELLII/COOKSONIAE group
_ · · · _	· .=		31 SUBTILISPHARA PERLUCIDA	73	FROMEA CF. F. GLABELLA
			32 CHLAHYDOPHORELLA TRABECULDSA	64	FROMEA FRAGILIS
			34 LEPTODINIUM? HYALODERHOPSE	16	GONYAULACYSTA HELICOIDEA HELICOIDEA
COMPLEX Y RICK T			35 OLIGOSPHAERIDIUM COMPLEX	85	GONYAULACYSTA JURASSICA
			35 CORONIFERA DECANICA	41	HESLERTONIA HESLERTONENSIS HYSTRICHODINIUM AFF. H. FURCATUM
•		· · ·	38 LEPTODINIUM? HADRUM	54	HYSTRICHODINIUM VOIGTI1
		1:1::	# 37# ATOPODINIUM HAROMENSE # 40# Hystrichosphaeridium Arborispinum	17	HYSTRICHOSPHAERIDIUM ARBORISPINUM HYSTRICHOSPHAERINA SCHINDEWOLFII
·	· — ·		41 HYSTRICHODINIUM AFF. H. FURCATUM	25	KIOKANSIUM POLYPES POLYPES
	_		42 DINGODINIUM? ALBERTII	47	LAGENADINIUM? MEMBRANOIDIUM
·	-	• · · ·	44 SPINIFERITES SPP.	79	LEPTODINIUM CANCELLATUM
.=		Щ::	46 BATIOLADINIUH? EXIGUUH	38	LEPTODINIUM? HADRUM LEPTODINIUM? HYALODERMOPSE
·		H · ·	47 LAGENADINIUNT MEMBRANDIDIUM	30	LEVISPHAERA CF. L. CRASSICINGULATA
	F		49 SENTUSIDINIUM SP. 1	26	NUDERONGIA TETRACANTHA NYKTERICYSTA? VITREA
::		· · · ·	50 OLOGOSPHAERIDIUM PERFORATUM PERFORATUM	61	ODONTOCHITINA OPERCULATA
			52 STIPHROSPHAERIDIUH CF. S. ANTHOPHORUH	35	OLIGOSPHAERIDIUM CP. O. PULCHERRIMUM OLIGOSPHAERIDIUM COMPLEX
	<u></u>	::::	53 OLIGOSPHAERIDIUM? ASTERIGERUM	18	OLIGOSPHAERIDIUM POCULUM
			55 CLEISTOSPHAERIDIUM HUGUONIDTII	53	OLIGOSPHAERIDIUM PROLIXISPINOSUM OLIGOSPHAERIDIUM? ASTERIGERUM
		::::	56 CASSICULOSPHAERIDIA RETIGULATA	50	OLOGOSPHAERIDIUM PERFORATUM PERFORATUM
	<u> </u>		50 EXIGUISPHAERA PLECTILIS	76	OVOIDINIUM SP. 4
11111	<u>-</u>	::::	59 PROTOELLIPSODINIUM CLAVULUM	43	PALAEOPERIDINIUM CRETACEUM
			61 ODONTOCHITINA OPERCULATA	67	PROLIXOSPHAERIDIUM PARVISPINUM
		: :	62 WALLODINIUM KRUTZSCHII 63 ENDOSCRINIUM CAMPANULA	59	PROTOELLIPSODINIUM CLAVULUM
			64 FROMEA FRAGILIS	75	PSEUDOCERATIUM EISENACKII
	• •••	::::	65 PSEUDOCERATIUM CF. P. RETUSUM	57	PSEUDOCERATIUM IVERI SP. NOV.
			67 PROLIXOSPHAERIDIUM PARVISPINUM	7	PSEUDOCERATIUM TOVEAE SP. NOV.
	• •••		68 VESPEROPSIS LONGICORNIS	83	PTEROSPERMELLA CF. P. AUSTRALIENSIS
			70 GIRCULODINIUMI SP. 2	82	SCHIZOCYSTIA
	••		71 CHLANYDOPHORELLA NYEI	78	SENONIASPHAERA MICRORETICULATA
			73 FROMER CF. F. GLABELLA	27	SENTUSIDINIUM SP. 2
	::=	: <u>: :</u>	74 OVOIDINIUH SP. 4	20	SENTUSIDINIUM VERRUCOSUM
		- · · ·	76 OVOIDINIUM CINCTUM	44	SPINIFERITES SPP.
			77 CIRCULODINIUN BREVISPINOSUN	52	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM SUBTLLISPHAERA PERLUCIDA
		· · -	79 LEPTODINIUH CANCELLATUH	8	SURCULOSPHAERIDIUM AFF. S. PHOENIX
	••••	: <u></u>	80 VESPEROPSIS NAVI 81 ACRITARCH	4	SYSTEMATOPHORA AFF. S. CRETACEA
			82 SCHIZOCYSTIA	11	TRICHODINIUM SPEETONENSE
<u> </u>	:::		03 PTEROSPERMELLA CF. P. AUSTRALIENSIS 04 " Thair from leaf	86 68	TUBOTUBERELLA SP. VESPEROPSIS LONGICOBNIS
	-· ·		85 GONYAULACYSTA JURASSICA	80	VESPEROPSIS MAYI
			06 TUBOTUBERELLA SP.	62	WALLODINIUM KRUTZSCHII
3		1 3	subzones		section 17
I.	Ш		zones		Augulahiorgat Wallastan El
U Barr.	L.Ap	L. U.Apt	stages		Aucenablerget wonaston Pl.

40 10 10 10 10 10 10 10 10 10 10 10 10 10		
33333		SPECIES LOCATION INDEX
63 13 13 13 13		index numbers are the columns in which species appear.
22222		
NNNNN		INDEX
	i i	INDEX
0 0 0 H N		NUMBER SPECIES
	1 DLIGOSPHAERIDIUM CF. D. ALBERTENSE	10 ACHOMOSPHAERA? NEPTUNI
	2 NELCHINOPSIS KOSTRONIENSIS	64 ACRITARCI
	3 01 160SPHOERIDIUM REPEORATUM COLUM	54 DATIOLADINUUM TARCERT
		54 BATTOLADINTOM JARGERI
	A A SENTUSIDINIUM SP. 1	41 BATIOLADINIUM LONGICORNUTUM
· · ·	5 TANYOSPHAERIDIUM BOLETUS	42 BATIOLADINIUM MICROPODUM
	6 KLEITHRIASPHAERIDIUM EDINODES	47 CASSICULOSPHAERIDIA MAGNA
	7 MUDERONGIA AFF. H. SIMPLEX MICROPERFORATA	48 CASSICULOSPHAERIDIA RETICULATA
	8 0LIGOSPHAERIDIUN? ASTERIGERUM	43 CHLAMYDOPHORELLA NYET
	PHOREROCYSTA NEGCONICA NEGCONICA	
and a second		TI CHLAMTDOFHORELLA TRABECOLOSA
	I TO I HCHOHOSPHHERHY NEPTONI	55 CIRCULODINIUM AFF. C. ATTADALICUM
	11 CHLAMYDOPHORELLA TRABECULOSA	12 CIRCULODINIUM DISTINCTUM
	12 CIRCULODINIUM DISTINCTUM	13 CIRCULODINIUM? SP. 3
	13 CIRCULODINIUM? SP. 3	15 CLEISTOSPHAERIDIUM HUGUONIOTII
	14 CLEISTOSPHAERIDIUM? ACICULARE	14 CLEISTOSPHAERIDIUM? ACTCULARE
	15 CLEISTOSPHAERIOTUM HUGUONTOTIT	36 CORONTEERA OCEANICA
	16 EXOCHOSENAERIOLUM ENDOCHITCH	
	13 COMMON OFFICE PORT	56 CHIBROPERIDINIUM EDWARDSII
	IV BUNYAULACYSTA FASTIGIATA	57 CTENIDODINIUM ELEGANTULUM
	18 HESLERTONIA HESLERTONENSIS	37 DINGODINIUM? ALBERTII
	19 HYSTRICHODINIUM VOIGTII	58 DISCORSIA NANNA
	20 HYSTRICHOSPHAERIDIUH ARBORISPINUM	44 ELLIPSOIDICTYUM IMPERFECTUM
	21 KIOKANSIUM POLYPES POLYPES	59 EXIGUISPHAERA PLECTILIS
	22 LAGENADINIUMA HENDRONOTOTUM	
		TO EAUCHOSPHAERIDIUM PHRAGMITES
	23 LEVISPHAERA CF. L. CRASSICINGULATA	60 FLORENTINIA MANTELLII/COOKSONIAE group
	24 OLIGOSPHAERIDIUM COMPLEX	61 FROMEA AMPHORA
	25 OLIGOSPHAERIDIUM CF. D. FENESTRATUM	66 GOCHTEODINIA VILLOSA MULTIPURCATA
	26 SENTUSIDINIUH SP. 2	17 CONVAULACYSTA RASTICIATA
	27 SIRMIODINIUM GROSSI	
		50 GONYAULACYSTA HELICOIDEA HELICOIDEA
	28 SPINIFERITES SPP.	68 GONYAULACYSTA JURASSICA
	29 TRICHODINIUM SPEETONENSE	30 GONYAULACYSTA PERFOROBTUSA
	30 GONYAULACYSTA PERFOROBTUSA	18 HESLERTONIA HESLERTONENSIS
·	31 LEPTODINIUM? HYALODERMOPSE	19 HYSTRICHODINIUM VOIGTII
	32 MUDERONGIA TETROCONTHO	
		20 HISTRICHOSPHAERIDIUM ARBORISFINUM
-	SST PSEUDUCERATION ANAPARISSUM	51 HYSTRICHOSPHAERINA SCHINDEWOLFII
	34 PSEUDOCERATIUM PELLIFERUM	21 KIOKANSIUM POLYPES POLYPES
·	35 TANYOSPHAERIDIUM SALPINX	45 KLEITHRIASPHAERIDIUM CORRUGATUM
	36 CORONIFERA OCEANICA	6 KLEITHRIASPHAERIDIUM EOINODES
	37 DINGODINIUM7 ALBERTII	22 LAGENADINIUM2 MEMBRANOIDIUM
200 million (1990)	SON SURCOLOSPHHERIDION MFF. S. PHOENIX	31 LEFTODINIOM? HYALODERMOPSE
· · · · · ·	39 DLIGOSPHAERIDIUM POCULUM	23 LEVISPHAERA CF. L. CRASSICINGULATA
• • • • • • •	40 PAREODINIA SPP.	7 MUDERONGIA AFF. M. SIMPLEX MICROPERFORATA
· · ·	41 BATIOLADINIUM LONGICORNUTUH	32 MUDERONGIA TETRACANTHA
· · · · · · · · · · · · · · · · · · ·	42 BATIOLADINIUM MICROPODUM	2 NELCHINOPSIS KOSTROMIENSIS
	43 CHLANYDOPHORELLA NYEI	1 OLIGOSPHARRIDIUM CF. O. ALBERTENSE
		25 OLTCOSPHARETOTIM CR. O. RENESTRATIM
	45 KLEITHKINSPHNERIDIUM CORRUGATUM	46 OLIGOSPHAEHIDIUM CF. O. PULCHERRIMUM
	46 ULIGOSPHAERIDIUM CF. O. PULCHERRIMUM	24 OLIGOSPHAERIDIUM COMPLEX
· · · - ·	47 CASSICULOSPHAERIDIA MAGNA	3 OLIGOSPHAERIDIUM PERFORATUM COLUM
	48 CASSICULOSPHAERIDIA RETICULATA	62 OLIGOSPHAERIDIUM PERFORATUM PERFORATUM
· · · + ·	49 HALLODINIUH KRUTZSCHII	39 OLIGOSPHAERIDIUM POCULUM
	50 GONYAULACYSTA HELICOIDEA HELICOIDEA	8 OLIGOSPHAERIDIUM2 ASTERICERUM
	51 HYSTRICHOSPHOERING SCHINDENOLELT	
	52 PALAFOPERIDINIUM OPETACEUM	40 DADDODINITA COD
		AU PAREODINIA SPP.
	53 PSEUDOCERATIUM NUDUM	9 PHOBEROCYSTA NEOCOMICA NEOCOMICA
	54 BATIOLADINIUM JAEGERI	33 PSEUDOCERATIUM ANAPHRISSUM
••••	55 CIRCULODINIUM AFF. C. ATTADALICUM	53 PSEUDOCERATIUM NUDUM
· · · · · -	56 CRIBROPERIDINIUM EDWARDSII	34 PSEUDOCERATIUM PELLIFERUM
	57 CTENIDODINIUM ELEGANTULUM	65 PTEROSPERMELLA CE P AUCTDALTENOTO
	58 DISCORSIA NANNA	67 RICAUDELLA SD
		A CONTRACTORIZATION OD A
	SVI ENIGOISFINERA PLEGTILIS	SENTUSIDINIUM SP. 1
	BU FLORENTINIA MANTELLII/COOKSONIAE group	26 SENTUSIDINIUM SP. 2
· · · ·	61 FROMEA AMPHORA	27 SIRMIODINIUM GROSSII
	62 OLIGOSPHAERIDIUM PERFORATUM PERFORATUM	28 SPINIFERITES SPP.
	63 STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM	63 STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM
	64 ACRITARCH	38 SURCILLOSPHAERIDIUM AFP & DUORNIN
	45 PTEROSPERATIO OF PLANETRAL PROFE	5 TANVOSDUARDIDIUM DOLEMUS
	SOFFICKUSPERHELLM GR. P. HUSTKHLIENSIS	S TANTOSPHALKIDIOM BOLETUS
	BOB GOCHTEODINIA VILLOSA MULTIFURCATA	35 TANYOSPHAERIDIUM SALPINX
	67 RIGAUDELLA SP.	29 TRICHODINIUM SPEETONENSE
	68 GONYAULACYSTA JURASSICA	49 WALLODINIUM KRUTZSCHII
1 2	subzones	section 18
		366101110
1	zone	
I Barr	stage	SE of Kunnpasset Wollaston Fl.
L.Dall.	orago	

0 - N	<u>ہ</u>	ii.			
- 0 0	3				SPECIES LOCATION INDEX
ωωω	ω 1	-		Index 1	numbers are the columns in which species appear.
422	422			INDEX	
14 15	17			NUMBER	SPECIES
F	0 11	0 D			
	• #	1	APTEODINIUM RETICULATUM	6	ACHOMOSPHAERA? NEPTUNI
		21	LEPTODINIUM? HYALODERHOPSE	65	ACRITARCH
		4	PSEUDOCERATIUM CE. P. SOLOCISPINUM	52	BATIOLADINIUM JAEGERI
	. :	5	BATIOLADINIUM? EXIGUUM	7	BATIOLADINIUM LONGICORNUTUM
	•	6	ACHOMOSPHAERA? NEPTUNI	49	BATIOLADINIUM MICROPODUM
	•	7	BATIOLADINIUM LONGICORNUTUM	5	BATIOLADINIUM? EXIGUUM
	: :	8.	CALLAIOSPHAERIDIUH ASYMMETRICUM	10	CALLAIOSPHAERIDIUM ASYMMETRICUM
	. :	10	CRIBROPERIDINIUM MUDERONGENSE	18	CHLAMYDOPHORELLA TRABECULOSA
	• :	11 .	DISCORSIA NANNA	19	CIRCULODINIUM AFF. C. ATTADALICUM
	•	12	HESLERTONIA HESLERTONENSIS	20	CIRCULODINIUM DISTINCTUM
	2 8	14	NUCERONGIA TETRACANTHA	53	CORONIFERA OCEANICA
	- 1	15	OLIGOSPHAERIDIUH POCULUM	9	CRIBROPERIDINIUM EDWARDSII
-	• 1	16	SIRMIODINIUM GROSSII	10	CRIBROPERIDINIUM MUDERONGENSE
	<u> </u>	17	STIPHROSPHAERIDIUH CF. S. ANTHOPHORUH	54	CRIBROPERIDINIUM? AFF. C. CORNUTUM
CTC) + 0000		18	CHLAMYDOPHORELLA TRABECULOSA	22	DESMOCYSTA PLEKTA DINCODINIUM2 ALBERTII
-	- 1	20	CIRCULODINIUM DISTINCTUM	11	DISCORSIA NANNA
	- 1	21	GLEISTOSPHAERIDIUM? ACICULARE	60	ELLIPSOIDICTYUM IMPERFECTUM
+	- :	22	DESMOCYSTA PLEKTA	55	ENDOSCRINIUM CAMPANULA
		23	DINGODINIUM? ALBERTII	47	EXIGUISPHAERA PLECTILIS
	_ i	25	FLORENTINIA MANTELLII/COOKSONIAE grout	25	FLORENTINIA MANTELLII/COOKSONIAE group
		26	FROMEA AMPHORA	26	FROMEA AMPHORA
	- :	27	HYSTRICHODINIUM VOIGTII	61	FROMEA FRAGILIS
		28	HYSTRICHOSPHAERIDIUM ARBORISPINUM	50	GONYAULACYSTA HELICOIDEA HELICOIDEA
	_ 1	30	KIOKANSIUM POLYPES POLYPES	48	HESLERIONIA HESLERIONENSIS HYSTRICHODINIUM AFF. H. FURCATUM
	- 1	31	LAGENADINIUM? MEMBRANDIDIUM	56	HYSTRICHODINIUM RAMOIDES
	- 3	32	LEVISPHAERA CF. L. CRASSICINGULATA	27	HYSTRICHODINIUM VOIGTII
	- 1	33	NYKTERICYSTA? VITREA	28	HYSTRICHOSPHAERIDIUM ARBORISPINUM
	_	34	OLIGOSPHAERIDIUM COMPLEX	29	HYSTRICHOSPHAERINA SCHINDEWOLFII KIOKANSTUM POLYPES POLYPES
_	_	36	OLIGOSPHAERIDIUM CF. 0. PULCHERRIMUM	13	KLEITHRIASPHAERIDIUM EOINODES
	n i	37	PALAEOPERIDINIUM CRETACEUM	31	LAGENADINIUM? MEMBRANOIDIUM
- · · ·	- 1	38	PAREODINIA SPP.	2	LEPTODINIUM? HYALODERMOPSE
	~	39	PSEUDOCERATIUM NUDUM	32	LEVISPHAERA CF. L. CRASSICINGULATA MUDERONGIA TETRACANTHA
=:-		41	SENTUSIDINIUM SP. 2	33	NYKTERICYSTA? VITREA
	- 1	42	SPINIFERITES SPP.	51	ODONTOCHITINA OPERCULATA
- • •	- :	43	SUBTILISPHAERA PERLUCIDA	57	OLIGOSPHAERIDIUM CF. O. ALBERTENSE
		44	TANYOSPHAERIDIUH BOLETUS	36	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
	. :	46	BATIOLADINIUM? PELLIFERUM	15	OLIGOSPHAERIDIUM POCULUM
•—	. :	47	EXIGUISPHAERA PLECTILIS	62	OLIGOSPHAERIDIUM PROLIXISPINOSUM
•=	•	48	HYSTRICHODINIUM AFF. H. FURCATUM	34	OLIGOSPHAERIDIUM? ASTERIGERUM
		49	BATIOLADINIUM HIGROPODUM GONYAULAGYSTA HELICOIDEA HELICOIDEA	37	PAREODINIA SPP.
		51	ODONTOCHITINA OPERCULATA	3	PHOBEROCYSTA NEOCOMICA NEOCOMICA
	•	52	BATIOLADINIUM JAEGERI	63	PSEUDOCERATIUM CF. P. RETUSUM
• •	•	53	CORONIFERA OCEANICA	4	PSEUDOCERATIUM CF. P. SOLOCISPINUM
	: 1	54	ENDOSCRINIUM CAMPANULA	39	PSEUDOCERATIUM TOVEAE SP NOV
		56	HYSTRICHODINIUM RAMOIDES	66	PTEROSPERMELLA CF. P. AUSTRALIENSIS
• •	•	57	OLIGOSPHAERIDIUH GF. D. ALBERTENSE	67	RIGAUDELLA SP.
· · -	•	58	PSEUDOCERATIUH TOVERE SP. NOV.	40	SENTUSIDINIUM SP. I
::-	<u> </u>	59	ELLIPSOIDICTYUM IMPERFECTUM	16	STRMIODINIUM SP. Z
		61	FROMEA FRAGILIS	42	SPINIFERITES SPP.
	- 1	62	OLIGOSPHAERIDIUM PROLIXISPINOSUM	17	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM
	~	63	PSEUDOCERATIUN CF. P. RETUSUM	43	SUBTILISPHAERA PERLUCIDA
	-	64	VESPEROPSIS LONGICORNIS	44	TANYOSYHAERIDIUM BOLETUS TRICHODINIUM SPECTONENSE
	- 1	66	PTEROSPERHELLA CF. P. AUSTRALIENSIS	64	VESPEROPSIS LONGICORNIS
- • •	. 1	67	RIGAUDELLA SP.	45	WALLODINIUM KRUTZSCHII
-		-			
3		S	002010		section 19
1	п	Z	ones		N off Gyldenspids Wollaston Fl
U.Barr.	L.A	pt.s	tages		

470 442 390 344 290 240 240 240 240 240 240 240 240 240 24	n 4	
333333333333333333		SPECIES LOCATION INDEX
		and a substruction of the columns in writer species appear.
2218 2218 2218 2218 2218 2218 2218 2218		INDEX
5 9 9 9 5 5 7 9 7 9 7 8 8 6 6 6 7 N		NUMBER SPECIES
· · · · · · · · · · · · · · · · · · ·	1 PAREODINIA SPP.	53 ACRITARCH
	2 GAUGA PARVA	39 APTEODINIUM CF. A. GRANDE
· · · · · · · · · · · · · · · · · · ·	4 WALLODINIUM KRUTZSCHII	56 BALMULA PENTARADIATA
	5 LAGENADINIUM? MEMBRANDIDIUM	9 BATIOLADINIUM JAEGERI
· · · ·	6 CHLANYDOPHORELLA TRABECULOSA	48 BATIOLADINIUM SHAFTESBURIENSE SP. NOV.
	8 OLIGOSPHAERIDIUM CF. D. TOTUM	58 BOURKIDINIUM GRANULATUM 58 BOURKIDINIUM SP 1
	9 BATIOLADINIUM JAEGERI	37 CALLAIOSPHAERIDIUM ASYMMETRICUM
<u> </u>	10 CIRCULODINIUM DISTINCTUM	32 CARPODINIUM GRANULATUM
	11 CLEISTOSPHAERIDIUM? ACICULARE	2 CAUCA PARVA 41 CHTCHAOUADINIUM VESTITUM
	13 ELLIPSOIDICTYUM IMPERFECTUM	62 CHLAMYDOPHORELLA NYEI
	14 EKOCHOSPHAERIDIUM PHRAGHITES	6 CHLANYDOPHORELLA TRABECULOSA
	15 FLORENTINIA HANTELLII/COOKSONIAE group	10 CIRCULODINIUM DISTINCTUM
	17 HAPSOCYSTA? BENTEAE SP. NOV	11 CLEISTOSPHAERIDIUM? ACTCULARE
· · · · · · · · · · · · · · · · · · ·	18 LEPTODINIUH CANCELLATUH	35 CORONIFERA OCEANICA
	19 LEVISPHAERA CF. L. CRASSICINGULATA	12 DESMOCYSTA PLEKTA
	21 ODONTOCHITINA OPERCULATA	40 DISCORSIA NANNA 13 ELLIPSOIDICTYUM IMPERENCIUM
	22 OLIGOSPHAERIDIUH COMPLEX	33 ENDOSCRINIUM CAMPANULA
	23 PALAEDPERIDINIUN GRETACEUN	14 EXOCHOSPHAERIDIUM PHRAGMITES
	25 PSEUDOCERATIUM POLYHORPHUM	15 FLORENTINIA MANTELLII/COOKSONIAE group 16 FROMMA AMPHODA
	26 RHOMBODELLA PAUGISPINA	45 FROMEA FRAGILIS
	27 SENTISIDINIUM SP. 1	17 HAPSOCYSTA? BENTEAE SP. NOV
	28 SENTUSIDINIUN SP. 2	44 HYSTRICHODINIUM PULCHRUM PULCHRUM
	30 STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM	42 KIOKANSTUM POLYPES POLYPES 3 KLEITHRIASPHAERTDIUM KOINODES
	31 VESPEROPSIS HAVI	5 LAGENADINIUM? MEMBRANOIDIUM
	32 CARPODINIUM GRANULATUM	66 LEIOFUSA SP.
	33 ENDOSCRINIUM CAMPANULA 34 TANYOSPHAERIDIUM BOLETUS	18 LEPTODINTUM CANCELLATUM 19 LEVISPHAEDA CE L CRASSICINCIILATA
·—····	35 GORONIFERA OGEANICA	20 LITOSPHAERIDIUM ARUNDUM
·-···	36 BOURKIDINIUM GRANULATUM	59 ODONTOCHITINA ANCALA
	37 GALLAIOSPHAERIDIUN ASYMMETRICUM	21 ODONTOCHITINA OPERCULATA 2 ODONTOCHITINA SINGULI
····	39 APTEODINIUM CF. A. GRANDE	43 OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
· · - · · · · - · · · ·	40 DISCORSIA NANNA	8 OLIGOSPHAERIDIUM CF. O. TOTUM
	41 CHICHAOUADINIUM VESTITUM	22 OLIGOSPHAERIDIUM COMPLEX
	43 0LIGOSPHAERIDIUM CF. 0. PULCHERRIMUM	46 OLIGOSPHAERIDIUM PERFORATUM 46 OLIGOSPHAERIDIUM POCULUM
· · · — · · · · · · · · ·	44 HYSTRICHODINIUM PULCHRUM PULCHRUM	61 OLIGOSPHAERIDIUM PROLIXISPINOSUM
···	45 FROMEA FRAGILIS	51 OLOGOSPHARRIDIUM SP. 1
	47 TANYOSPHAERIDIUM CF. T. ISOCALAMUS	23 PALAEOPERIDINIUM CRETACEUM 1 PAREODINIA SPP
	48 BATIOLADINIUM SHAFTESBURIENSE SP. NOV.	52 PROLIXOSPHAERIDIUM PARVISPINUM
•••••••••••••••••	49 APTEODINIUM RETICULATUM	60 PROTOELLIPSODINTUM SPINOCRISTATUM
	50 SYSTEMATOPHORA AFF. S. CRETACEA	53 PSEUDOCERATIUM EISENACKII
·····	52 PROLINOSPHAERIDIUM PARVISPINUM	25 PSEUDOCERATIUM POLYMORPHUM
· · · · · · · · · · · · · · · · · · ·	53 PSEUDOCERATIUM EISENACKII	65 PTEROSPERMELLA CF. P. AUSTRALIENSIS
	54 CLEISTOSPHAERIDIUM HUGUONIOTII	26 RHOMBODELLA PAUCISPINA
	56 BALHULA PENTARADIATA	27 SENTISIDINIUM SP. 1
·····	57 OLIGOSPHAERIDIUM PERFORATUM PERFORATUM	28 SENTUSIDINIUM SP. 2
· · · · · · · · · · · · · · · · · · ·	58 BOURKIDINIUM SP. 1	55 SENTUSIDINIUM VERRUCOSUM
	60 PROTOFILIPSODINIUM SPINOCRISTATUM	29 SPINIFERITES SPP. 30 STIPHROSPHAERIDIUM CE S ANTHORNORUM
·····	61 OLIGOSPHAERIDIUM PROLIXISPINOSUM	50 SYSTEMATOPHORA AFF. S. CRETACEA
· · · · · · · · · · · · · · · · · · ·	62 CHLANYDOPHORELLA NYEI	34 TANYOSPHAERIDIUM BOLETUS
	63 ACRITARCH	47 TANYOSPHAERIDIUM CF. T. ISOCALAMUS
	65 PTEROSPERHELLA CF. P. AUSTRALIENSIS	38 VESPEROPSIS? DIGITATA
	66 LEIOFUSA SP.	4 WALLODINIUM KRUTZSCHII
1 2	subzones	section 20
I	zone	
M.Albian	stage	Gyldenspids Wollaston Fl.

_

022	077 067 052 042	107	1			SPECIES LOCATION INDEX
333 200	******	ε 3	1 1		Index	numbers are the columns in which species appear.
422	422	422	11		INDEX	
30 -	206723	5	1 1		NUMBER	SPECIES
1::	1:::::	:	1	NUDERONGIA STAUROTA Phoberocysia neocomica neocomica	42	ACHOMOSPHAERA? NEPTUNI ACRITARCI
+.			3	KLEITHRIASPHAERIDIUH CORRUGATUH	61	APTRODINIUM RETICULATUM
		:	1 4	CHLAHYDOPHORELLA NYEI Gonyaulacysta fastigiata	68	ATOPODINIUM HAROMENSK BATIOLADINIUM JAEGERI
		•		PSEUDOCERATIUM ANAPHRISSUM	33	BATIOLADINIUM LONGICORNUTUM
		:	2	NELCHINDPSIS KOSTROMIENSIS PSEUDOCERATIUM PELLIFFRUM	44	HATIOLADINIUM MICROPODUM HATIOLADINIUM2 EXIGUUM
aaa •		•	9	OLIGOSPHAERIDIUN? ASTERIGERUM	74	CALLAIOSPHAERIDIUM ASYMMETRICUM
1.1		:	10	GONYAULAGYSTA HELICOIDEA HELICOIDEA Heslertonia Heslertonensis	75	CARPODINIUM GRANULATUM CASSICULOSPHAERIDIA RETICULATA
	•	·	12	SIRMIODINIUM GROSSII	76	CAUCA PARVA
		1.	13	CIRCULODINIUM AFF. C. ATTADALICUM Circulodinium distinctum	4	CHLAMYDOPHORELLA NYEI CHLAMYDOPHORELLA TRABECULOSA
	· - · · · -	·	15	CRIBROPERIDINIUM EDWARDSII	13	CIRCULODINIUM AFF. C. ATTADALICUM
17.2	····		16	KIOKANSIUM POLYPES POLYPES LEPTODINIUM? HYALODERHOPSE	11 23	CIBCULODINIUM DISTINCTUM CLEISTOSPHAERIDIUM HUGUONIOTII
	·	•	10	HUDERONGIA TETRACANTHA	22	CLEISTOSPHAERIDIUM? ACICULARE
	-	Ľ.	20	BATIOLADINIUH JAEGERI	53	CORONIFERA OCEANICA CRIBROPERIDINIUM EDWARDSII
		E	21	CHLANYDOPHORELLA TRABECULOSA	36	CRIBROPERIDINIUM EXILICRISTATUM
· · · · · · · · · · · · · · · · · · ·	· — :	F	22	CLEISTOSPHAERIDIUM? ACICULARE CLEISTOSPHAERIDIUM HUGUONIDTII	73	DESMOCYSTA PLEKTA DINGODINIUM? ALBERTII
	D	-	24	EXOCHOSPHAERIDIUM PHRAGHITES	62	DISCORSIA NANNA
		F	26	LEVISPHAERA CF. L. GRASSICINGULATA	71	ELLIPSOIDICTYUM IMPERFECTUM ENDOSCRINIUM CAMPANULA
		E	27	DLIGOSPHAERIDIUH COMPLEX	66	EXIGUISPHAERA PLECTILIS
		-	29	SPINIFERITES SPP.	24	EXOCHOSPHAEHIDIUM PHRAGMITES FLORENTINIA MANTELLII/COOKSONIAE group
	$\pm \cdots$		30	CASSICULOSPHAERIDIA RETICULATA	57	FROMEA AMPHORA
-		:	32	HUDERONGIA AFF. H. SIMPLEX HICROPERFOR HYSTRICHOSPHAERIDIUM ARBORISPINUM	46	FROMEA FRAGILIS FROMEA SP. 1
i an		:	33	BATIOLADINIUM LONGICORNUTUM	88	GOCHTEODINIA VILLOSA MULTIFURCATA
		-	34	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM	5 10	GONYAULACYSTA FASTIGIATA GONYAULACYSTA HELICOIDEA HELICOIDEA
• • • • • • • • • • • • • • • • • • • •	:1:::::		36	GRIBROPERIDINIUH EXILIGRISTATUM	90	GONYAULACYSTA JURASSICA
		1.	36	RHYNCHODINIOPSIS CF. R. APTIANA	11	HAPSOCYSTA? BENTEAE SP. NOV. HESLERTONIA HESLERTONENSIS
1:1:1	· · · · ·	1:	39	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM	63	HYSTRICHODINIUM AFF. H. FURCATUM
			41	PSEUDOCERATIUM NUDUM	32	HYSTRICHODINIUM VOIGTII HYSTRICHOSPHAERIDIUM ARBORISPINUM
::-	· · · · · -	1	42	ACHOMOSPHAERA? NEPTUNI	65	HYSTRICHOSPHAERINA SCHINDEWOLFII
	·		44	BATIOLADINIUM HICROPODUM	3	KIOKANSIUM POLYPES POLYPES KLEITHRIASPHAERIDIUM CORRUGATUM
		1:	45	ENDOSCRINIUM CAMPANULA	50	KLEITHRIASPHAERIDIUM EOINODES
• • •	-·	•	47	OLIGOSPHNERIDIUM POGULUM	17	LEPTODINIUM? HYALODERMOPSE
::=		Ŀ	40	TRICHODINIUM SPEETONENSE	26	LEVISPHAERA CF. L. CRASSICINGULATA
		F	50	KLEITHRIASPHAERIDIUM EDINODES	54	MUDERONGTA CF. M. TOMASZOWENSIS
::-			51	SENTUSIDINIUM SP. 2 NALLODINIUM KRUTZSCHII	1	MUDERONGIA STAUROTA MUDERONGIA TETRACANTHA
• • • •		•	53	CORONIFERA OCEANICA	7	NELCHINOPSIS KOSTROMIENSIS
			54	MUDERONGIA CF. M. TOMASZOWENSIS FROMEA SP. 1	69 59	NYKTERICYSTA? VITREA ODONTOCHITINA OPERCULATA
	·····	ŀ.	56	SUBTILISPHAERA PERLUCIDA	35	OLIGOSPHAERIDIUM CP. O. PULCHERRIMUM
		F.	58	FROMEA AMPHORA PSEUDOCERATIUH TOVEAE SP. NOV.	79 27	OLIGOSPHAERIDIUM CF. O. TOTUM OLIGOSPHAERIDIUM COMPLEX
	· - · - · m	2	59	ODONTOCHITINA OPERCULATA	70	OLIGOSPHAERIDIUM PERFORATUM COLUM
111		F	60	PALAEOPERIDINIUH CRETACEUH Sentusidiniuh Sp. 1	47 80	OLIGOSPHAERIDIUM POCULUM OLIGOSPHAERIDIUM PROLIXISPINOSUM
	· · · - • ·		62	DISCORSIA NANNA	9	OLIGOSPHAERIDIUM? ASTERIGERUM
		1:	64	HYSTRICHODINIUM AFF. H. FURCATUM Apteodinium Reticulatum	81	OVOIDINIUM SP. 3 PALAEOPERIDINIUM CRETACEUM
	· · · · -	1:	65	HYSTRICHOSPHAERINA SCHINDEWOLFII	28	PAREODINIA SPP.
		1.	66	EXIGUISPHAERA PLECTILIS Systematophora AFF. S. Cretacea	6	PHOBEROCYSTA NEOCOMICA NEOCOMICA PSEUDOCERATIUM ANAPHRISSUM
	· · · ·	•	68	ATOPODINIUM HAROMENSE	72	PSEUDOCERATIUM IVERI SP. NOV.
111	:::=:	:	70	NYKTERICYSTA? VITREA OLIGOSPHAERIDIUM PERFORATUM COLUM	41	PSEUDOCERATIUM NUDUM PSEUDOCERATIUM PELLIFERUM
	· · · ·	-	71	ELLIPSOIDICTYUM IMPERFECTUM	82	PSEUDOCERATIUM POLYMORPHUM
:::	:::::	Ľ	72	PSEUDOCERATIUM IVARI SP. NOV. Deshdcysta plekta	58 87	PSKUDOCERATIUM TOVEAE SP. NOV. PTEROSPERMELLA CF. P. AUSTRALIENSIS
		-	74	CALLAIDSPHAERIDIUH ASYMMETRICUM	83	RHOMBODELLA PAUCISPINA
:::	:::::	E	75	CARPODINIUM GRANULATUM Cauca Parva	38	RHYNCHODINIOPSIS CF. R. APTIANA RIGAUDELLA SP.
		-	77	HAPSDOYSTA! BENTEAE SP. NOV.	61	SENTUSIDINIUM SP. 1
:::		-0	78	LEPTODINIUM CANGELLATUM DLIGOSPHAERIDIUM CF. D. TOTUM	51	SENTUSIDINIUM SP. 2 SIRMIODINIUM GROSSII
• • •	· · · · · ·	-	60	DLIGOSPHAERIDIUM PROLIXISPINOSUM	29	SPINIFERITES SPP.
:::	::::::		81	DVOIDINIUM SP. 3 PSEUDOCERATIUM POLYMORPHUM	39 56	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM SUBTILISPHAERA PERLUCIDA
• • •	• • • • • •	-	83	RHONBODELLA PAUCISPINA	40	SURCULOSPHAERIDIUM AFF. S. PHOENIX
:1	::::::		84	VESPEROPSIS HAYI Ulvella Nannae	67	SYSTEMATOPHORA AFF. S. CRETACEA TANYOSPHAERIDIUM BOLETUS
· —	· – · · · –	•	86	ACRITARCH	37	TANYOSPHAERIDIUM CF. T. ISOCALAMUS
4::			87	PTEROSPERMELLA CF. P. AUSTRALIENSIS GOCHTEODINIA VILLOSA MULTIFURCATA	48	TRICHODINIUM SPEETONENSE TUROTUBERELLA SP.
	• • • • • • • • •	•	89	TUBOTUBERELLA SP.	85	ULVELLA NANNAE
:=	· · · · · · ·	:	90	GONYAULACYSTA JURASSICA Rigaudella Sp.	84 52	VESPEROPSIS MAYI WALLODINIUM KRUTZSCHII
	-	-	T			
1 2	3	1	-	3002008		section 21
I Borr	U. Berr	IV	Ath	stage		Stratumbjerget Wollaston Fl.
L. Darr.	U. Dall.	IVI.	10.0.	014900		

1			
		1000	SPECIES LOCATION INDEX
		rndex	numbers are the columns in which species appear.
		INDEX	
. 8		NUMBER	SDECTES
			5116165
1	CLEISTOSPHAERIDIUM? ACICULARE	18	BATIOLADINIUM JAEGERI
2:	DESMOCYSTA PLEKTA	10	CALLA IOSPHAERIDIUM ASYMMETRICUM
3	OLIGOSPHAERIDIUM PROLIXISPINOSUM	42	CAUCA PARVA
4 [PSEUDOCERATIUM CF. P. INTERIORENSE	39	CHICHAOUADINIUM VESTITUM
5 .	STIPHROSPHAERIDIUM CF. S. ANTHOPHORUM	11	CHLAMYDOPHORELLA TRABECULOSA
6	DICONDDINIUM ARCTICUM	19	CIRCULODINIUM DISTINCTUM
2	ENDOSCRINIUM CAMPANULA	1	CLEISTOSPHAERIDIUM? ACICULARE
	OLIGOSPHMERIDIUM CF. O. PULCHERRINUM	2	DESMOCYSTA PLEKTA
•	SENTUSIDINIUH SP. 2	6	DICONODINIUM ARCTICUM
10	CALLAIOSPHAERIDIUM ASYMMETRICUM	37	DISCORSIA NANNA
11	CHLANYDOPHORELLA TRABECULOSA	12	ELLUPSOUDICTYUM IMPERFECTUM
121	ELLIPSOIDICTYUM IMPERFECTUM	7	ENDOSCRINIUM CAMPANULA
13	LEPTODINIUH GANCELLATUM	20	EXOCHOSPHAERIDIUM PHRAGMITES
14 1	LEVISPHAERA CF. L. CRASSICINGULATA	21	FLORENTINIA MANTELLII/COOKSONIAE group
15	ODONTOCHITINA SINGHII	38	FROMEA FRAGILIS
10	SENTUSIDINIUN SP. 1	10	FROMEA SP. 1
17	WALLODINIUM KRUTZSCHII	22	HAPSOCYSTA? BENTEAE SP. NOV.
181	BATIOLADINIUM JAEGERI	35	KLEITHRIASPHAERIDIUM E01NODES
19	CIRCULODINIUM DISTINCTUM	13	LEPTODINIUM CANCELLATUM
20	EXOCHOSPHAERIDIUM PHRAGMITES	14	LEVISPHAERA CF. L. CRASSICINGULATA
21	FLORENTINIA MANTELLII/COOKSONIAE group	23	LITOSPHAERIDIUM ARUNDUM
22 1	HAPSOCYSTA' BENTERE SP. NOV.	24	ODONTOCHITINA OPERCULATA
23	LITOSPHAERIDIUM ARUNDUM	15	ODONTOCILITINA SINGHII
24	ODONTOCHITINA OPERCULATA	8	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
25	OLIGOSPHAERIDIUM COMPLEX	43	OLIGOSPHAERIDIUM CF. O. TOTUM
26	PALAEOPERIDINIUM GRETAGEUN	25	OLIGOSPHAERIDIUM COMPLEX
27	PAREODINIA SPP.	41	OLIGOSPHAERIDIUM PERFORATUM PERFORATUM
28	PSEUDOCERATIUM POLYMORPHUM	3	OLIGOSPHAERIDIUM PROLIXISPINOSUM
29	RHOMBODELLA PAUCISPINA	32	OVOIDINIUM SP. 3
30 ii	SPINIFERITES SPP.	26	PALAEOPERIDINIUM CRETACEUM
31	VESPEROPSIS HAVI	21	PAREODINIA SPP.
32 1	OVOIDINIUH SP. 3	1	PSEUDOCERATIUM CF. P. INTERIORENSK
33	PSEUDOCERATION EISENACKII	3.5	PSEUDOCERATION EXISENACITI
34	PLETTURIORPHAERINIUM FOILOGE	29	PSEUDOCERATIUM POLYMORPHUM
33 1		44	PTEDOCRAWITA CE D AUCTDALIENCIO
30 1	DISCORSIA NANNA	20	BUOMDODVIIA DAUCISDINA
37 1		16	SENTISTATION SP 1
30			SUNTISTICTION SP 2
37 1	FROMES SP. 1	30	SPINIFERITES SPP
		5	STIPHROSPHAFRIDIUM CE S ANTHOPHORUM
42	CAUCA PARVA	34	TANYOSPHAERIDIUM BOLETUS
43	OLIGOSPHEERIDIUH CE. O. TOTUH	31	VESPEROPSIS MAYI
++	PTEROSPERMELLA CF. P. AUSTRALIENSIS	17	WALLODINIUM KRUTZSCHII
- ASA M			
subz	zone		section 22
zone	9		

. -- -.

.

. .

·····

• • • •

stage

::::**=**

1 IV

M.Alb.

CTTT

······

m · · ·

Kontaktravine Clavering Ø

32 29 27 27 27 27 27 27 27 27 27 27 27 27 27	38	:		
		1	11.12	SPECIES LOCATION INDEX
	ω .		Index	numbers are the columns in which species appear
5105115115115115115115115115115115115115	51	11 11	INDEX	
555555555555555555555555555555555555555	688		NUMBER	SPECIES
	• ; •	TANYOSPHAERIDIUH SALPINK	56	ACRITANCH
<u> </u>	2	SUBTILISPHAERA PERLUCIDA	54	APTEODINIUM CF. A. GRANDE
		" OLIGOSPHAERIDIUM CF. O. TOTUM	43	APTEODINIUM RETICULATUM
			15	BATTOLADINTOM JAEGERT
	- : .	BATIOLADINIUM JAEGERI	46	BOURKIDINIUM GRANULATUM
	- 1 7	CHLANYDOPHORELLA TRABECULDSA	18	CALLATOSPHARRIDIUM ASYMMETRICUM
	- " 0	CIRCULODINIUM DISTINCTUM	34	CAUCA PARVA
	- 9	CLEISTOSPHAERIDIUH? ACICULARE	36	CHICHAOUADINIUM VESTITUM
	. 10	EXOCHOSPHAERIDIUM PHRAGHITES	7	CHLAMYDOPHORELLA TRABECULOSA
		" FLORENTINIA MANTELLII/COOKSONIAE Group	8	CIRCULODINIUM DISTINCTUM
	- 112	" PROPER PRADILIS		CLEASTOSPHAERIDIUM HUGDONIOTII
	- 11	" HYSIRICHODINIUM PULCHPUM PULCHPUM	40	CORONINERA OCTANICA
	- 115	LEVISPHAERA CF. L. CRASSICINGULATA	53	CRIBROPERIDINTUM EDWARDSIT
	- : 16	LITOSPHAERIDIUM ARUNDUM	37	DESMOCYSTA PLEKTA
	m 17	DONTOCHITINA OPERCULATA	10	DICONODINIUM ARCTICUM
	- 10	DOONTOCHITINA SINGHII	50	DISCORSIA NANNA
	IIII 19	OLIGOSPHAERIDIUH COMPLEX	38	ELLIPSOIDICTYUM IMPERFECTUM
	1 20	OLIGOSPHAERIDIUM CF. D. PULCHERRIMUM	45	ENDOSCRINIUM CAMPANULA
	1 21	I OLIGOSPHAERIDIUM SP. 1	10	EXOCHOSPHAERIDIUM PHRAGMITES
	- 1 22	PALAEOPERIDINIUM CRETACEUM	1.11	FLORENTINIA MANTELLII/COOKSONIAE group
	- 20	PSEUDOCERATION ETSENHERT	51	FROMEA AMPHORA
	- 25	RHOMBODELLA PAUCISPINA	12	PROPERT PRACTICES
_	- 1 26	SENTUSIDINIUM SP. 1	14	HYSTRICHODINIUM PULCHRUM PULCHRUM
	ID 1 27	SPINIFERITES SPP.	57	LEIOFUSA SP.
	· 28	TANYOSPHAERIDIUM BOLETUS	5	LEPTODINIUM CANCELLATUM
	- 29	VESPEROPSIS HAVI	42	LEPTODINIUM? CF. L. DELICATUM
	- 30	WALLODINIUM KRUTZSCHII	15	LEVISPHAERA CF. L. CRASSICINGULATA
	. 31	* PROTOELLIPSODINIUM SPINOCRISTATUM	16	LITOSPHAERIDIUM ARUNDUM
		STIPUPOSPHOSPICIUM OF 6 ONTHORNORUM	39	ODONTOCHITINA ANCALA
	. 34	GAUCA PARVA	18	ODONTOCHITINA SINGULI
	- 35	BATIOLADINIUM SHAFTESBURIENSE SP. NOV.	20	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
	- : 30	GHICHAQUADINIUM VESTITUM	3	OLIGOSPHAERIDIUM CF. O. TOTUM
·	37	DESMOCYSTA PLEKTA	19	OLIGOSPHAERIDIUM COMPLEX
	- 38	ELLIPSOIDICTYUM IMPERFECTUM	47	OLIGOSPHAERIDIUM PERFORATUM PERFORATUM
	39	ODONTOCHITINA ANGALA	52	OLIGOSPHAERIDIUM POCULUM
· · · · — · — · — · — ·	+0	DICONDOINIUM ARCTICUM	21	OLIGOSPHAERIDIUM SP. I
	• • • •	SENTUSIDINIUM SP. 2	22	PALAEOPERIDINIUM CRETACEUM
		APTEODINIUM RELICULATUM	23	PROTOELLIPSODIATION SPINOCRISTATUM
		PSEUDOCERATIUM POLYMORPHUM	24	PSEUDOCERATIUM EXPOLITUM
		ENDOSCRINIUM CAMPANULA	44	PSEUDOCERATIUM POLYMORPHUM
	. 40	BOURKIDINIUM GRANULATUM	59	PTEROSPERMELLA CF., P. AUSTRALIENSIS
	47	OLIGOSPHAERIDIUM PERFORATUM PERFORATUM	25	RHOMBODELLA PAUCISPINA
· · · ·—— · · · · · — · ·	. 48	GALLAIOSPHAERIOIUH ASYMMETRICUM	58	SCHIZOCYSTIA
···-··	49	CORONIFERA OGEANICA	26	SENTUSIDINIUM SP. 1
· · · · · · · · · ·	·a 50	DISCORSIA NANNA	41	SENTUSIDINIUM SP. 2
· · · · · — · · · — · — ·		OLIGORDUOERIRIUM POCULUM	27	STINIFERIES SFL.
	- 53	CRIBROPERIDINIUM FOUNDED	2	SUBTLLISPHAERA PERLUCIDA
	- 1 54	APTEODINIUM CF. A. GRANDE	28	TANYOSPHAERIDIUM BOLETUS
	55	TANYOSPHAERIDIUH CF. T. ISOCALAMUS	55	TANYOSPHAERIDIUM CF. T. ISOCALAMUS
	- : 50	ACRITARCH	1	TANYOSPHAERIDIUM SALPINX
	57	LETOFUSA SP.	29	VESPEROPSIS MAYI
· · · · · · - · - · - · - · -	- 58	SCHIZOCYSTIA	32	VESPEROPSIS? DIGITATA
— · · · · — · · · — · · · · · · · · · · · · · · · · · · ·	. , 59	PTEROSPERMELLA CF. P. AUSTRALIENSIS	30	WALLODINIUM KRUTZSCHIJ
	0	brages	-	
	2 SU	020162	-	section 23
IV	zo	ne		Langelinie Clavering Ø
M. Albian	sta	age		cangenne olarenng Ø

12 07 03			
-0602		1 Carbon Lawrence	SPECIES LOCATION INDEX
33333	H B D B	Index	numbers are the columns in which species appear
4444			
5 5 5 5 5 5 m m m m m		INDEX	OBRATOR
- 5 8 - 13		NUMBER	SPECIES
	1 LITHOSPHAERIDIUM SIPHONIPHORUM	38	ACRITARCH
	2 OLIGOSPHEERIDIUM CE. O. PULCHERRIMUM	22	BATIOLADINIUM LAEGERT
	3 LEVISPHAERA CF. L. CRASSICINGULATA	30	BOURKIDINIUM GRANULATUM
······	4 ODONTOCHITING ANCALA	23	CHLAMYDOPHORELLA NYET
	5 SENTUSIOINIUM SP. 1	24	CHLAMYDOPHORELLA TRABECULOSA
	6 CLEISTOSPHOERIDIUM HUGUONIDITI	21	CIRCULODINIUM DISTINCTUM
- · · ·	7 DESMOCYSTA PLEKTA	6	CLEISTOSPHAERIDIUM HUGUONIOTII
··	B FROMEA FRAGILIS	36	CLEISTOSPHAERIDIUM? ACICULARE
	9 HAPSOCYSTA? BENTEAF SP. NOU	31	CRIBROPERIDINIUM INTRICATUM
	10 000NTOCHITING OPERCULATA	7	DESMOCYSTA PLEKTA
	11 OLIGOSPHOERIDIUM COMPLEX	25	DOBOCYSTA LITOTES
	12 9LIGOSPHOERIDIUM CE. 0. TOTUM	20	EPELIDOSPHAERTDIA SP. 1
· · · · · · · · · · · · · · · · · · ·	13 0V0101N10H? SP. 1	26	EXOCHOSPHAERIDIUM PHRAGMITES
	14 PALAEOPERIDINIUM CRETACEUM	34	FLORENTINIA MANTELLII/COOKSONIAE group
	15 PALAEOPERIDINIUM7 SP. 1	27	FROMEA AFF. F. EXPOLITA
	16 PSEUDOCERATIUM AFF. P. EXPOLITUM	8	FROMEA FRAGILIS
	17 RHOMBODELLA PAUCISPINA	29	FROMEA SP. 1
	10 SPINIFERITES SPP.	9	HAPSOCYSTA? BENTEAE SP. NOV
	19 SUBTILISPHAERA KALAALLITI SP. NOV.	35	KIOKANSTUM POLYPES POLYPES
	20 # EPELIDOSPHAERIDIA SP. 1	3	LEVISPHAERA CF. L. CRASSICINGULATA
· — · · ·	21 GIRCULODINIUM DISTINCTUM	Ĩ	LITHOSPHAERIDIUM STPHONTPHORUM
· — · — ·	22 BATIOLADINIUM JAEGERI	4	ODONTOCHITINA ANCALA
· <u> </u>	23 GHLAMYDOPHORELLA NYEI	10	ODONTOCHITINA OPERCULATA
· — — · —	24 CHLAMYDOPHORELLA TRABECULOSA	2	OLIGOSPHAERIDIUM CF. O. PULCHERBIMUM
·	25 DOROCYSTA LITOTES	12	OLIGOSPHAERIDIUM CF. O. TOTUM
	26 EXOCHOSPHAERIDIUM PHRAGMITES	11	OLIGOSPHAERIDIUM COMPLEX
· — · — —	27 FROMEA AFF. F. EXPOLITA	13	OVOIDINIUM? SP. 1
· – · – –	20 PALAEDHYSTRICHOPHORA INFUSORIODES	28	PALAEOHYSTRICHOPHORA INFUSORIODES
· · · ·	29 FROMEA SP. 1	14	PALAEOPERIDINIUM CRETACEUM
	30 BOURKIDINIUM GRANULATUM	15	PALAEOPERIDINIUM? SP. 1
•••	31 GRIBROPERIDINIUM INTRICATUM	16	PSEUDOCERATIUM AFF. P. EXPOLITUM
	32 SENTUSIDINIUM SP. 2	17	RHOMBODELLA PAUCISPINA
· · — · · ·	33 XENASCUS CERATICIDES	39	SCHIZOCYSTIA
	34 FLORENTINIA MANTELLII/COOKSONIAE GROUD	5	SENTUSIDINIUM SP. 1
	35 KIOKANSIUN POLYPES POLYPES	32	SENTUSIDINIUM SP. 2
	36 CLEISTOSPHAERIDIUM? ACICULARE	18	SPINIFERITES SPP.
	37 XIPHOPHORIDIUM ALATUM	19	SUBTILISPHAERA KALAALLITI SP. NOV.
· · · · ·	38 ACRITARCH	33	XENASCUS CERATIOIDES
	39 SCHIZOCYSTIA	37	XIPHOPHORIDIUM ALATUM
2	subzone	-	
3	5052016	-	section 24
V	zone	-	N Home Forland Hope with Hope
U. Albian	stage		

000			
- 5 5 5			SPECIES LOCATION INDEX
3333 		Index	numbers are the columns in which species appear.
5 5 5 5		TNDEX	
450 445 442 440		NUMBER	SPECIES
		40	ACDITADCU
	2 FROMEA APT. P. ENFOLTIN	40	RATIO ADTITUM LAROPDT
	T LEUISPHOEPO CE L CROSSICINGULATO	28	BOURKIDINIUM CRANILATIM
		14	
	5 TANYOSPHAEPIDIUM DE T ISOCALAMUS	15	CTRCIII ODINITIM DISTINCTUM
		10	
<u> </u>	7 BATTOLADINIUM JAFGERI	16	
		33	DESMOCYSTA DI EKTA
		17	DOBOCYSTA LITOTES
		10	
·		1.1	EYOCHOSPHAEDIDIN DUDACHITES
		25	PLOPENTINIA MANTELLII/COOPENLAR
	13. PALAEAHYSTRICHOPHORA INFUSORIODES		FROMEA ARE & EXPOLITA
		1 18	FROMEA REACTING
		2	FROMEA SP 1
		19	HAPSOCYSTA? BENTEAF SP NOV
	17 DOROCYSTA LITOTES	29	KTOKANSTUM POLYPES POLYPES
	18 FROMEA FRAGILIS	37	LAGENADINTUM? MEMBRANOIDEA
	19 HAPSOCYSTA? BENTERE SP. NOV.	3	LEVISPHAERA CF L CRASSICINGULATA
	20 ODONTOCHITINA OPERCULATA	38	ODONTOCHITINA ANCALA
	21 OVDIDINIUM? SP. 1	20	ODONTOCHITINA OPERCULATA
	22 PSEUDOCERATIUM AFF. P. EXPOLITUM	39	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
	23 RHOMBODELLA PAUCISPINA	8	OLIGOSPHAERIDIUM CF. O. TOTUM
	24 SENTUSIDINIUM SP. 1	12	OLIGOSPHAERIDIUM COMPLEX
	25 SPINIFERITES SPP.	21	OVOIDINIUM? SP. 1
	26 SUBTILISPHAERA KALAALLITI SP. NOV.	13	PALAEOHYSTRICHOPHORA INFUSORIODES
	27 XIPHOPHORIDIUM ALATUM	9	PALAEOPERIDINIUM CRETACEUM
	28 BOURKIDINIUM GRANULATUM	34	PALAEOPERIDINIUM? SP. 1
	29 KIOKANSIUM POLYPES POLYPES	22	PSEUDOCERATIUM AFF. P. EXPOLITUM
	30 HALLODINIUM LUNA	41	PTEROSPERMELLA CF. P. AUSTRALIENSIS
	31 KENASCUS CERATIOIDES	23	RHOMBODELLA PAUCISPINA
•	32 CLEISTOSPHAERIDIUM HUGUONIOTII	24	SENTUSIDINIUM SP. 1
•	33 DESHOCYSTA PLEKTA	36	SENTUSIDINIUM SP. 2
	34 PALAEOPERIDINIUM? SP. 1	4	SENTUSIDINIUM VERRUCOSUM
	35 FLORENTINIA MANTELLII/COOKSONIAE group	25	SPINIFERITES SPP.
	36 SENTUSIDINIUN SP. 2	26	SUBTILISPHAERA KALAALLITI SP. NOV.
	37 LAGENADINIUM? MEMBRANDIDEA	5	TANYOSPHAERIDIUM CF. T. ISOCALAMUS
	38 ODONTOCHITINA ANCALA	6	TANYOSPHAERIDIUM SALPINX
	39 OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM	30	WALLODINIUM LUNA
	40 ACRITARCH	31	XENASCUS CERATIOIDES
• • - • •	41 PTEROSPERMELLA CF. P. AUSTRALIENSIS	27	XIPHOPHORIDIUM ALATUM
3	subzone		section 25
v	zone	1	
U. Albian	stage	1	N Home Forland Hold with Hope
See Chine and I	Viugo		

0 3 3	n N	8 0 8 0			
332					SPECIES LOCATION INDEX
ωω	ω ω	H H		Index	numbers are the columns in which species appear.
5 5 5	5	11 P		1222222	
62	3 6	H H H H		INDEX	
-1 00 0		1 1		NUMBER	SPECIES
		1 1		C	
	<u> </u>	1 1 1	FROMEA AMPHORA	50	PAIR FROM LEAF
	· ·	2	OLIGOSPHAERIDIUM SP. 1	19	BATIOLADINIUM JAEGERI
	1°	3	WALLODINIUM KRUTZSCHII	7	BATIOLADINIUM MICROPODUM
	· ·	# 4 #	CIRCULODINIUM DISTINCTUM	38	BATIOLADINIUM SHAFTESBURIENSE SP. NOV.
·3— ·		. 5	FLORENTINIA MANTELLII/COOKSONIAE group	8	BATIOLADINIUM? PELLIFERUM
	0.0	. 6.	ODONTOCHITINA OPERCULATA	39	CATASTOMOCYSTIS MICRORETICULATA
	1		BATIOLADINIUM MICROPODUM	9	CAUCA PARVA
	· ·	4 8 H	BATIOLADINIUH' PELLIFERUH	40	CHICHAOUADINIUM VESTITUM
	l.		CAUCA PARVA	33	CHLAMYDOPHORELLA NYEI
		10 H	CRIBROPERIDINIUM EDWARDSII	20	CHLAMYDOPHORELLA TRABECULOSA
		n 11 n n	GRIBROPERIDINIUM' AFF, C. CORNUTUM	17	CIRCULODINIUM BREVISPINOSUM
• • • •	· ·	1 121	HESLERTONIA HESLERTONENSIS	4	CIRCULODINIUM DISTINCTUM
• • • •	· ·	1 13	MYSTRICHOSPHAERINA SCHINDEWOLFII	21	CLEISTOSPHAERIDIUM? ACICULARE
	· ·	. 14.	KLEITHRIASPHAERIDIUH EDINODES	10	CRIBROPERIDINIUM EDWARDSII
	<u> </u>	1 15	LEPTODINIUM? CF. L. DELICATUM	11	CRIBROPERIDINIUM? AFF. C. CORNUTUM
		1 16 1	PSEUDDCERATIUH POLYMORPHUM	41	DISCORSIA NANNA
		1 17	GIRCULODINIUM BREVISPINOSUM	42	ELLIPSOIDICTYUM IMPERFECTUM
	12.0	10	VESPEROPSIS LONGICORNIS	22	EXOCHOSPHAERIDIUM PHRAGMITES
		19	BATIOLADINIUM JAEGERI	5	FLORENTINIA MANTELLII/COOKSONIAE group
		# 20 #	CHLAHYDOPHORELLA TRABECULOSA	1	FROMEA AMPHORA
		. 21 .	GLEISTOSPHAERIDIUM? ACICULARE	23	FROMEA FRAGILIS
		1 22 1	EXOCHOSPHAERIDIUM PHRAGMITES	43	HAPSOCYSTA? BENTEAE SP. NOV.
••		# 23 #	FROMEA FRAGILIS	12	HESLERTONIA HESLERTONENSIS
•		# 24 #	KIOKANSIUM POLYPES POLYPES	13	HYSTRICHOSPHAERINA SCHINDEWOLFII
-		1 25 1	LEVISPHAERA CF. L. CRASSICINGULATA	24	KIOKANSIUM POLYPES POLYPES
		1 261	ODONTOCHITINA SINGHII	14	KLEITHRIASPHAERIDIUM EOINODES
		1 27 1	OLIGOSPHAERIDIUM COMPLEX	15	LEPTODINIUM? CF. L. DELICATUM
- 0000000		1 28 (PALAEOPERIDINIUM CRETACEUM	32	LEPTODINIUM? HYALODERMOPSE
		1 29	PSEUDOCERATIUM EISENACKII	25	LEVISPHAERA CF. L. CRASSICINGULATA
	_	. 30	SPINIFERITES SPP.	44	LITOSPHAERIDIUM ARUNDUM
		1 31 1	VESPEROPSIS MAYI	6	ODONTOCHITINA OPERCULATA
	•	1 32,0	LEPTODINIUM? HYALODERMOPSE	26	ODONTOCHITINA SINGHII
		33	CHLAMYDOPHORELLA NYEI	34	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
		1 34	OLIGOSPHAERIDIUM CF. D. PULCHERRIHUM	45	OLIGOSPHAERIDIUM CF. O. TOTUM
	_	35	SENTUSIDINIUM SP. 1	27	OI.1GOSPHAERIDIUM COMPLEX
• •		36	SENTUSIDINIUM SP. 2	2	OLIGOSPHAERIDIUM SP. 1
• • •	·•	1 37 H	SUBTILISPHAERA KALAALLITI SP. NOV.	28	PALAEOPERIDINIUM CRETACEUM
	_	. 38	BATIOLADINIUM SHAFTESBURIENSE SP. NOV.	46	PALAEOPERIDINIUM? SP. 1
• • •	1	. 39	CATASTOMOCYSTIS HICRORETICULATA	29	PSEUDOCERATIUM EISENACKII
• • •	_	+0	CHICHADUADINIUM VESTITUM	47	PSEUDOCERATIUM EXPOLITUM
	-	. +1 .	DISCORSIA NANNA	16	PSEUDOCERATIUM POLYMORPHUM
• • •	-	1 42 1	ELLIPSCIDICTYUN IMPERFECTUN	49	PTEROSPERMELLA CF. P. AUSTRALIENSIS
	-	43	HAPSOCYSTA? BENTEAE SP. NOV.	48	RHOMBODELLA PAUCISPINA
• • •	-	1 ++ u	LITOSPHAERIDIUM ARUNDUM	35	SENTUSIDINIUM SP. 1
• • •		1 45 1	OLIGOSPHAERIDIUH CF. O. TOTUH	36	SENTUSIDINIUM SP. 2
• • •	.0	46 1	PALAEOPERIDINIUM? SP. 1	30	SPINIFERITES SPP.
• • •	_	# 47 #	PSEUDOCERATIUM EXPOLITUM	37	SUBTILISPHAERA KALAALLITI SP. NOV.
• • •	1.1	* *8 *	RHOHBODELLA PAUCISPINA	18	VESPEROPSIS LONGICORNIS
-· ·	•	. 49 .	PTEROSPERMELLA CF. P. AUSTRALIENSIS	31	VESPEROPSIS MAYI
• •	•	# 50 #	PHAIR FROM LEAF	3	WALLODINIUM KRUTZSCHII
4	1	S	ubzones		section 26
III	IV	z	ones		
L. Alb.	M./	Ib. s	tages		Spaths Plateau Hold with Hope

= :	:	SPECTES LOCATION INDEX
M 351		Index numbers are the columns in which species appear.
626		TNDEX NUMBER SPECIES
-	1 BATIDLADINIUM JAEGERI	1 BATIOLADINIUM JAEGERI
-0 -	Z CAUCA PARVA	
-0	3 CHLAMYDOPHORELLA TRABECULOSA	A CLEISTOSPHAERIDIUM? ACTCULARE
- :	4 CLEISTOSPHAERIDIUM? ACICULARE	5 DOROCYSTA LUTOTES
	5 & DORDCYSTA LITOTES	6 EPELTDOSPHAERIDIA SP. 1
	6 EPELIDOSPHAERIDIA SP. 1	7 FROMEA FRACTLIS
	7 FROMER FRAGILIS	8 HAPSOCYSTA? BENTEAE SP. NOV.
	B HHPSUCYSTA? BENTERE SP. NOV.	9 ODONTOCHITINA ANCALA
	7 UDUNTUGHTTINH ANCALA	10 OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
	10 OLIGOSPHAERIDIGH CF. 0. POLCHERRINGH	11 OLIGOSPHAERIDIUM COMPLEX
	12 OVOIDINIUMA SP. 1	12 OVOIDINIUM? SP. 1
-	13 POLOFOPERIDINIUM CRETACEUM	13 PALAEOPERIDINIUM CRETACEUM
-	14 PALAEOPERIDINIUM? SP. 1	14 PALAEOPERIDINIUM? SP. 1
-	15 RHOMBODELLA PAUCISPINA	15 RHOMBODELLA PAUCISPINA
	16 SPINIFERITES SPP.	16 SPINIFERITES SPP.
- 1	17 SUBTILISPHAERA KALAALLITI SP. NOV.	17 SUBTILISPHAERA KALAALLITI SP. NOV.
·v	18 XENASCUS CERATIOIDES	18 XENASCUS CERATIOIDES
- :	19 XIPHOPHORIDIUH ALATUM	19 XIPHOPHORIDIUM ALATUM
3	subzone	section 27
v	zone	Tables Del Hene with Hene
U. Alb.	stage	Toblas Dai Hope with Hope

÷					
0 -					
- 0			SPECIES LOCATION INDEX		
33		Index	numbers are the columns in which species appear.		
355		10000			
		INDEX			
36		NUMBER	SPECIES		
- 59 E.C.			0100100		
— · · · ·	1 DESHOGYSTA PLEKTA	26	ACRITARCH		
	2 PSEUDOCERATIUM AFF. P. EXPOLITUM	3	BATIOLADINIUM JAEGERI		
	3 BATIOLADINIUM JAEGERI	4	BOURKIDINIUM GRANULATUM		
	4 BOURKIDINIUM GRANULATUM	5	CIILAMYDOPHORELLA TRABECULOSA		
····	5 CHLAMYDOPHORELLA TRABECULOSA	6	CLEISTOSPHAERIDIUM HUGUONIOTII		
	6 CLEISTOSPHAERIDIUM HUGUONIOTII	21	CLEISTOSPHAERIDIUM? ACICULARE		
	7 DOROCYSTA LITOTES	1	DESMOCYSTA PLEKTA		
	8 EPELIDOSPHAER101A SP. 1	7	DOROCYSTA LITOTES		
-	9 EXICHOSPHAERIDIUM PHRAGMITES	8	EPELIDOSPHAEHIDIA SP. 1		
	10 FLORENTINIA MANTELLII/COOKSONIAE group	9	EXICHOSPHAERIDIUM PHRAGMITES		
	11 HAPSOCYSTA? BENTERE SP. NOV.	10	FLORENTINIA MANTELLII/COOKSONIAE group		
	12 ODONTOCHITINA OPERCULATA	11	HAPSOCYSTA? BENTEAE SP. NOV.		
	13 OLIGOSPHAERIDIUM COMPLEX	12	ODONTOCHITINA OPERCULATA		
-	14 OLIGOSPHAERIDIUH CF. D. TOTUH	22	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM		
	15 PALAEOPERIDINIUH CRETACEUM	14	OLIGOSPHAERIDIUM CF. O. TOTUM		
_	16 PALAEOPERIDINIUM? SP. 1	13	OLIGOSPHAERIDIUM COMPLEX		
	17 RHOHBODELLA PAUCISPINA	23	PALAEOHYSTRICHOPHORA INFUSORIODES		
_	18 SENTUSIDINIUM SP. 1	15	PALAEOPERIDINIUM CRETACEUM		
	19 SPINIFERITES SPP.	16	PALAEOPERIDINIUM? SP. 1		
CONTINUES	20 SUBTILISPHAERA KALAALLITI SP. NOV.	2	PSEUDOCERATIUM AFF. P. EXPOLITUM		
·	21 CLEISTOSPHAERIDIUH? ACICULARE	17	RHOMBODELLA PAUCISPINA		
	22 OLIGOSPHAERIDIUM CF. 0. PULCHERRIMUM	18	SENTUSIDINIUM SP. 1		
	23 PALAEOHYSTRICHOPHORA INFUSORIODES	19	SPINIFERITES SPP.		
	24 WALLODINIUH LUNA	20	SUBTILISPHAERA KALAALLITI SP. NOV.		
•	25 XIPHOPHORIDIUM ALATUM	24	WALLODINIUM LUNA		
•	26 ACRITARCH	25	XIPHOPHORIDIUM ALATUM		
2	subzone		section 28		
v	zone		Lunnandu, Hald with Hann		
U. Alb.	U. Alb. stage		Lygnaely Hold with Hope		

2			SPECIES LOCATION INDEX
3		Index	numbers are the columns in which species appear.
42			
59		INDEX	
٥	RC R	NUMBER	SPECIES
_	POTIOLODINUM JOSCEDI	22	ACRITARCH
		1	BATTOLADINIUM JAEGERT
_	3 BOURKIDINIUM GRANU ATUM	2	BATIOLADINIUM SHAFTESBURIENSE SP. NOV
-	4 CHLAMYDOPHORELLA TRABECULOSA	3	BOURKIDINIUM GRANULATUM
-	5 CIRCULODINIUM DISTINCTUM	4	CHLAMYDOPHORELLA TRABECULOSA
-	6 CIRCULODINIUM SP. 1	5	CIRCULODINIUM DISTINCTUM
	7 CRIBROPERIDINIUM EDWARDSII	6	CIRCULODINIUM SP. 1
-	8 DOROCYSTA LITOTES	7	CRIBROPERIDINIUM EDWARDSII
-	9 EXOCHOSPHAERIDIUM PHRAGMITES	8	DOROCYSTA LITOTES
-	10 FLORENTINIA MANTELLII/COOKSONIAE group	9	EXOCHOSPHAERIDIUM PHRAGMITES
-	11 HAPSOCYSTA? BENTEAE SP. NOV.	10	FLORENTINIA MANTELLII/COOKSONIAE group
-	12 LEPTODINIUM? CF. L. DELICATUM	11	HAPSOCYSTA? BENTEAE SP. NOV.
-	13 LEVISPHAERA CF. L. CRASSICINGULATA	34	LEIOFUSA SP.
-	14 LITOSPHAERIDIUM ARUNDUM	12	LEPTODINIUM? CF. L. DELICATUM
-	15 DOONTOCHITINA OPERCULATA	13	LEVISPHAERA CF. L. CRASSICINGULATA
_	16 ODONTOCHITINA SINGHII	14	LITOSPHAERIDIUM ARUNDUM
0000	17 DLIGOSPHAERIDIUH COMPLEX	15	ODONTOCHITINA OPERCULATA
-0	18 OLIGOSPHAERIDIUM PERFORATUM COLUM	16	OLICOSPHARPIDIUM CR. O. DULCHERDIMUM
$\Box \equiv 0$	20 0 ISOSPHERIOIUM CE D. TOTUM	20	OLICOSPHAERIDIUM CF. O. FOLCHERRIMOM
	21 OLISOSPHERIDIUM SP. 1	17	OLIGOSPHAERIDIUM COMPLEY
	22 PALAEOPERIDINIUM CRETACEUM	18	OLIGOSPHAERIDIUM COMPLEX
_	23 PALAEOPERIDINIUMA SP. 1	21	OLIGOSPHAERTDIUM SP. 1
- 1	24 PSEUDOCERATIUM EISENACKII	22	PALAROPERIDINIUM CRETACEUM
_ 1	25 PSEUDOCERATIUM EXPOLITUM	23	PALAEOPERIDINIUM? SP. 1
- 1	26 PSEUDOCERATIUN POLYMORPHUN	24	PSEUDOCERATIUM EISENACKII
	27 RHOHBODELLA PAUCISPINA	25	PSEUDOCERATIUM EXPOLITUM
- 1	20 SPINIFERITES SPP.	26	PSEUDOCERATIUM POLYMORPHUM
-	29 SUBTILISPHAERA KALAALLITI SP. NOV.	35	PTEROSPERMELLA CF. P. AUSTRALIENSIS
-	30 SENTUSIDINIUM SP. 1	27	RHOMBODELLA PAUCISPINA
-	31 SENTUSIDINIUM SP. 2	30	SENTUSIDINIUM SP. 1
-	32 HIGGINSIELLA GRANDSTANDICA	31	SENTUSIDINIUM SP. 2
-	33 ACRITARCH	28	SPINIFERITES SPP.
-	34 LEIDFUSA SP.	29	SUBTILISPHAERA KALAALLITI SP. NOV.
-	35 PTEROSPERMELLA CF. P. AUSTRALIENSIS	32	WIGGINSIELLA GRANDSTANDICA
1	subzone		section 29
V	zone		T
U.Alb.	stage		Iværdal Geographical Society Ø

000000NNN	•	
770 38 38 55 55 55 55 55 55 55 55 55 55 55 55 55		SPECIES LOCATION INDEX
3333333333333		Index numbers are the columns in which species appear
322322322322322322322322322322322322322		
16166		INDEX
19 19 19 19 19 19 19 19 19 19 19 19 19 1	• 1 E	NUMBER SPECIES
	1 01150SPHOERIDIUM SP. 1	51 ACRITARCH
·	2 CAUCA PARVA	3 APTEODINIUM RETICULATUM
	3 APTEODINIUM RETIGULATUM	11 BATIOLADINIUM JAEGERI
	4 CIRCULODINIUM SP. 1	9 BOURKIDINIUM GRANULATUM
_ ····	5 LAGENADINIUM? MEMBRANDIDIUM	2 CAUCA PARVA
· · · · · ·	6 CIRCULODINIUM DISTINTUM	46 CHLAMYDOPHORELLA NYEI
······	7 VESPEROPSIS MAYI	28 CHLAMYDOPHORELLA TRABECULOSA
	B SENTUSIDINIUM SP. 2	6 CIRCULODINIUM DISTINTUM
	9 BOURKIDINIUM GRANULATUM	4 CIRCULODINIUM SP. 1
	10 OLIGOSPHAERIDIUM COMPLEX	12 CLEISTOSPHAERIDIUM HUGUONIOTII
	- 11 BATIOLADINIUM JAEGERI	30 CLEISTOSPHAERIDIUM? ACICULARE
	- 12 CLEISTOSPHAERIDIUM HOGODNIOTII	AS CRIMBOPERIDINIUM TENSIFIENSE
	13 DESHOCYSTA FLEXTH	13 DESMOCYSTA DI EXTA
		14 DOBOCYSTA LITOTES
	- 16 HAPSOCYSTA? BENTERE SP. NOV.	38 ENDOSCRINIUM CAMPANULA
	- 17 LEVISPHAERA CF. L. CRASSICINGULATA	15 EXOCHOSPHAERIDIUM PHRAGMITES
	- 18 ODONTOCHITINA OPERCULATA	31 FLORENTINIA MANTELLII/COOKSONIAE group
	19 PALAEOPERIDINIUM? SP. 1	50 FROMEA AFF. F. EXPOLITA
· · · ·	- 20 PALAEOPERIDINIUM GRETACEUM	4.0 FROMEA AMPHORA
	21 RHOMBODELLA PAUGISPINA	29 FROMEA FRAGILIS
	22 SENTUSIDINIUM SP. 1	16 HAPSOCYSTA? BENTEAE SP. NOV.
	23 SUBTILISPHAERA KALAALLITI SP. NOV.	43 KIOKANSIUM POLYPES POLYPES
·-·········	24 LITOSPHAERIDIUM ARUNDUM	5 LAGENADINJUM? MEMBRANOIDIUM
	25 PSEUDOCERATIUM AFF. P. EXPOLITUM	52 LEIOFUSA SP.
	26 ODUNTOCHITINA ANCALA	17 LEVISPHAERA CF. L. CRASSICINGULATA
	27. WHELOUINION KRUTZSCHII	24 LITOSPHARRIDIUM ARUNDUM 23 LUYADINTUM SD
	29 FROMEA FRAGILIS	26 ODONTOCHITINA ANCALA
· · · · · · · · · · · · · · · · · · ·	- 30 CLEISTOSPHAERIDIUMY ACICULARE	18 ODONTOCHITINA OPERCULATA
· · · · · · · · · · · · · · · · · · ·	- 31 FLORENTINIA MANTELLII / COOKSONIAE group	0 44 OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
· · - · · · · · · · · · · · · · · · · ·	- 32 XIPHOPHORIDIUH ALATUH	10 OLIGOSPHAERIDIUM COMPLEX
	33 LUXADINIUH SP.	48 OLIGOSPHAERIDIUM POCULUM
	. 34 HIGGINSIELLA GRANDSTANDICA	1 OLIGOSPHAERIDIUM SP. 1
· · · · · · · · · · · · · · · · · ·	35 PAREODINIA SPP.	47 OVOIDINIUM SP. 2
. · · — · — · = · · · · −	- 36 PTEROSPERHELLA CF. P. AUSTRALIENSIS	41 OVOIDINIUM? SP. I
· · · ·	- 37 SPINIFERITES SPP.	42 PALAEOHYSTRICHOPHORA INFUSORIODES
	38 ENDOSCRINIUM CAMPANULA	20 PALAEOPERIDINIUM CRETACEUM
· · · · · · · · · · · · · · ·	39 GRIBROPERIDINIUM TENSIFTENSE	19 PALAEOPERIDINIUM? SP. 1
· · · · · · · · · · · · · · · · · · ·		25 DEFUDOCEDATIUM AFE D EXPOLITIM
•••••••••••••••••••••••••••••••••••••••	12 POLAFONYSTRICHOPMORA INFUSORIODES	36 PTEROSPERMELLA CF. P. AUSTRALIENSIS
	43 KIOKANSIUM POLYPES POLYPES	21 RHOMBODELLA PAUCISPINA
	44 0LIGOSPHAERIDIUH CF. D. PULCHERRIMUM	53 SCHIZOCYSTIA
	- 45 GRIBROPERIDIUIUM EDWARDSII	22 SENTUSIDINIUM SP. 1
	46 GHLANYDOPHORELLA NYEI	8 SENTUSIDINIUM SP. 2
· · · · · · · · · · · · · · · · · · ·	- 47 OVOIDINIUM SP. 2	37 SPINIFERITES SPP.
	48 OLIGOSPHAERIDIUM POCULUM	23 SUBTILISPHAERA KALAALLITI SP. NOV.
	49 HENRACUS CERATIDIDES	54 ULVELLA NANNAE
	- SO FROMEA AFF. F. EXPOLITA	7 VESPEROPSIS MAYI
$ - \cdots - \cdots + \cdots + \cdots$	51 ACRITARCH	27 WALLODINIUM KHUTZSCHII
	52 LEIOFUSA SP.	34 WIGGINSIELLA GRANDSTANDICA 40 YENAYOUS CEDATIOIDES
	SA WUELLA NONNOF	
	W 34 W ULVELLA AMAGAE	Ve ATTOVIDUITOTON AGAIVA
2 3	subzones	section 30
v	zone	
U. Albian	stage	Tværdal Geographical Society Ø

0 – ω 6	e a			
- 5 8 5	6 81 6 41			SPECIES LOCATION INDEX
	1 1		Index	numbers are the columns in which species appear.
24	6 8			
63 62 62	6		INDEX	
3 5 7 0			NUMBER	SPECIES
		CALLATOSPHAFRIDIUM ASYMMETRICUM	31	APTRODINIUM BETICULATUM
	2	CIRCULODINIUM DISTINCTUM	9	BATIOLADINTUM JAEGERI
	3	FROMEA AMPHORA	ī	CALLAIOSPHAERIDIUM ASYMMETRICUM
···· · · ·	4	ODONTOCHITING ANCALA	18	CAUCA PARVA
···· · ·	5	OLIGOSPHAERIDIUM CF. D. TOTUM	19	CHLAMYDOPHORELLA TRABECULOSA
<u> </u>	6	DISCORSIA NANNA	2	CIRCULODINIUM DISTINCTUM
· · · · ·	7	FROMER FRAGILIS	20	CIRCULODINIUM SP. 1
<u> </u>	8	KIOKANSIUH POLYPES POLYPES	21	CLEISTOSPHAERIDIUM? ACICULARE
<u> </u>	9	BATIOLADINIUM JAEGERI	36	CRIBROPERIDINIUM INTRICATUM
	10	DESMOCYSTA PLEKTA	10	DESMOCYSTA PLEKTA
<u> </u>	11	DOROCYSTA LITOTES	6	DISCORSIA NANNA
	12	FLORENTINIA MANTELLII/COOKSONIAE group	11	DOROCYSTA LITOTES
	13	PALAEOHYSTRICHOPHORA INFUSORIDDES	22	EXOCHOSPHAERIDIUM PHRAGMITES
	14	PSEUDOCERATIUM EXPOLITUM	12	FLORENTINIA MANTELLII/COOKSONIAE group
· ;	15	SENTUSIDINIUM SP. 1	3	FROMEA AMPHORA
·	16 1	SPINIFERITES SPP.	7	FROMEA FRAGILIS
	1 1 2 1	HIGGINSIELLA GRANDSTANDICA	23	HAPSOCYSTA? BENTEAE SP. NOV.
	100	GAUCA PARVA	8	KIOKANSIUM POLYPES POLYPES
	20	CIRCULODINIUM SP. 1	13	LEIOFUSA SP.
	20		21	LEVISPHABRA CF. L. CRASSICINGULAIA
I . I	22	EXOCHOSPHEEPIDIUM PUPPODITES	32	LITOSPRAERIDIUM ARUNDUM
	23	HAPSDOYSTA? BENTEAF SP. NOV.		
-	24	LEVISPHAERA CF. L. CRASSICINGULATA	25	ODONTOCHITINA ARCALA
	25	ODONTOCHITING OPERCULATA	34	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
	26	OLIGOSPHAERIDIUH COMPLEX	5	OLIGOSPHAERIDIUM CF. O. TOTUM
	27	PALAEOPERIDINIUM? SP. 1	26	OLIGOSPHAERIDIUM COMPLEX
	28	PALAEOPERIDINIUM CRETACEUM	33	OLIGOSPHAERIDIUM POCULUM
	29	SUBTILISPHAERA KALAALLITI SP. NOV.	13	PALAEOHYSTRICHOPHORA INFUSORIODES
	30	VESPEROPSIS MAYI	28	PALAEOPERIDINIUM CRETACEUM
· — · ·	31	APTEODINIUM RETICULATUM	27	PALAEOPERIDINIUM? SP. 1
· — · ·	32	LITOSPHAERIDIUM ARUNDUM	41	PSEUDOCERATIUM AFF. P. EXPOLITUM
·-··	33	OLIGOSPHAERIDIUM POCULUM	14	PSEUDOCERATIUM EXPOLITUM
·— · ·	34	OLIGOSPHAERIDIUM CF. D. PULCHERRIHUM	42	PTEROSPERMELLA CF. P. AUSTRALIENSIS
·-··	35	XIPHOPHORIDIUM ALATUM	39	RHOMBODELLA PAUCISPINA
·	36	CRIBROPERIDINIUM INTRICATUM	44	SCHIZOCYSTIA
· ·—·	37	HALLODINIUM KRUTZSCHII	15	SENTUSIDINIUM SP. 1
· ··	30	WALLODINIUM LUNA	16	SPINIFERITES SPP.
• • • • • • • • •	39 1	RHOMBODELLA PAUCISPINA	29	SUBTILISPHAERA KALAALLITI SP. NOV.
· · ·	40 .	LUXADINIUM SP.	45	ULVELLA NANNAE
	41 0	PSEUDOCERATIUM AFF. P. EXPOLITUM	30	VESPERUPSIS MAYI
	42 1	FIERUSPERMELLA CF. P. AUSTRALIENSIS	37	WALLODINIUM LUNA
	43	CETURUSH SP.	38	WICCINSTELLA CRANDSTANDICA
	45	ULVELLA NANNAE	35	XIPHOPHORIDIUM ALATUM
S S S S	0.05568			
1	sub	zone		section 31
V	zon	e		
U. Albian	stag	le		Tværdal Geographical Society Ø

2 - 0			
ພ ພ ຫ			SPECIES LOCATION INDEX
333		Index	numbers are the columns in which species appear.
3030			
		INDEX	
22		NUMBER	SPECIES
51 ω μ			
— ··	1 CIRCULODINIUM AFF. C. ATTADALICUM	22	ACHOMOSPHAERA? NEPTUNI
-··	2 HESLERTONIA HESLERTONENSIS	40	ACRITARCH
—··	3 OLIGOSPHAERIDIUM POCULUM	23	APTEODINIUM RETICULATUM
-· ·	4 SUBTILISPHAERA PERLUCIDA	9	BATIOLADINIUM JAEGERI
··· ·	5 TRICHODINIUM SPEETONENSE	6	BATIOLADINIUM MICROPODUM
	6 BATIOLADINIUM HICROPODUM	10	CHLAMYDOPHORELLA TRABECULOSA
	7 CLEISTOSPHAERIDIUM? ACICULARE	1	CIRCULODINIUM AFF. C. ATTADALICUM
- •• -	8 ENDOSCRINIUM CF. E. ROSTRATUM	34	CIRCULODINIUM BREVISPINOSUM
— · —	9 BATIOLADINIUM JAEGERI	27	CIRCULODINIUM DISTINCTUM
	10 CHLANYDOPHORELLA TRABECULOSA	28	CLEISTOSPHAERIDIUM HUGUONIOTII
	CRIBROPERIDINIUM EDWARDSII	7	CLEISTOSPHAERIDIUM? ACICULARE
	12 ELLIPSOIDICTYUH IMPERFECTUM	11	CRIBROPERIDINIUM EDWARDSII
	13 LEVISPHAERA CF. L. CRASSICINGULATA	29	DINGODINIUM? ALBERTII
	14 ODONTOCHITINA OPERCULATA	12	ELLIPSOIDICTYUM IMPERFECTUM
	15 OLIGOSPHAERIDIUM COMPLEX	35	ENDOSCRINIUM CAMPANULA
····	16 PAREODINIA SPP.	8	ENDOSCRINIUM CF. E. ROSTRATUM
	17 PSEUDOCERATIUM EISENACKII	30	EXOCHOSPHAERIDIUM PHRAGMITES
	I IB SENTUSIDINIUM SP. 1	31	FLORENTINIA MANTELLII/COOKSONIAE group
	19 SENTUSIDINIUR SP. 2	36	FROMEA AMPHORA
	20 SPINIFERITES SPP.	24	FROMEA FRAGILIS
	21 VESPEROPSIS LONGICORNIS	2	HESLERTONIA HESLERTONENSIS
	22 HCHONDSPHHERH? NEPTONI	32	KIOKANSIUM POLYPES POLYPES
	23 AFTEODINION RELIGOLATION	25	KLEITHRIASPHAERIDIUM EOINODES
1	24 FRUNEH FRHUILIS	37	LEPTODINIUM? HYALODERMOPSE
:=:	24 CIPHIODINIUM GROSSII	13	LEVISPHAERA CF. L. CRASSICINGULATA
		38	NYKTERICYSTA? VIIKEA
- diffe		14	OL TOCCULATION OPERCULATA
		15	OLIGOSPHAERIDIUM COMPLEX
1		3	DALARODREDIDIUM CORTACRUM
	31 ELOPENTINIA NONTELLII/COOKSONIAE OROUD	33	PADEODINIA CUD
	22 KIOKONSTUH DOLVERS DOLVERS	10	PAREODINIA SPF.
		10	CONTRECTOTION ED 1
	34 CIRCULODINIUM BREVISPINOSUM	10	SUNTICIDINIUM CD 2
	35 ENDOSCRINTUM COMPONIU O	26	STRATOSIDINION SP. 2
	36 FROMER AMPHORE	20	CDINIGEDITEC CDD
	37 LEPTODINIUM? HYALODERMOPSE	4	SURTH ISPNAERA PERINCINA
	38 NYKTERICYSTA? VITREA	5	TRICHODINIUM SPEETONENSE
	39 HALLODINIUM KRUTZSCHII	21	VESPEROPSIS LONGICORNIS
••	40 ACRITARCH	39	WALLODINIUM KRUTZSCHII
-			
1	subzone		section 32
Ш	zone		shallow well
L. Apt.	stage		Hold Bjerge Traill Ø

0 32				
				SPECIES LOCATION INDEX
			Index	numbers are the columns in which species appear.
NN				
0 0			INDEX	
9 N	1		NUMBER	SPECIES
	1			
	1	ACHONOSPHAERA? NEPTUNI	1	ACHOMOSPHAERA? NEPTUNI
· · ·	2	CAUCA PARVA	15	BATIOLADINIUM JAEGERI
	3	CRIBROPERIDINIUM EDWARDSI	16	BATIOLADINIUM MICROPODUM
	•	DISCORSIA NANNA	2	CAUCA PARVA
	5	FROMEA AMPHORA	17	CHLAMYDOPHORELLA TRABECULOSA
· · ·	6	HYSTRICHODINIUM VOIGTII	18	CIRCULODINIUM AFF. C. ATTADALICUM
	7	HYSTRICHOSPHAERINA SCHINDEWULFII	19	CIRCULODINIUM DISTINCTUM
	8	KLEITHRIASPHAERIDIUH EDINODES	35	CIRCULODINIUM? SP. 2
·0 •	9	MUDERONGIA CF. H. PARIATA	36	CLEISTOSPHAERIDIUM HUGUONIOTII
- •	10	DOONTOCHITINA IMPARILIS	20	CLEISTOSPHAERIDIUM? ACICULARE
~	11	OLIGOSPHAERIDIUM? ASTERIGERUM	3	CRIBROPERIDINIUM EDWARDSI
	12	PSEUDOCERATIUM PELLIFERUM	37	DESMOCYSTA PLEKTA
• • •	13	PSEUDOCERATIUN TOVEAE SP. NOV.	38	DINGODINIUM? ALBERTII
•	14	SUBTILISPHAERA PERLUCIDA	4	DISCORSIA NANNA
	15	BATIOLADINIUM JAEGERI	39	ELLIPSOIDICTYUM IMPERFECTUM
	16	BATIOLADINIUM MIGROPODUM	21	ENDOSCRINIUM CAMPANULA
	17 0	CHLAMYDOPHORELLA TRABECULOSA	22	EXOCHOSPHAERIDIUM PHRAGMITES
-	18	CIRCULODINIUM AFF. C. ATTADALICUM	23	FLORENTINIA MANTELLII/COOKSONIAE group
	19	CIRCULODINIUM DISTINCTUM	5	FROMEA AMPHORA
-	20	CLEISTOSPHAERIDIUM? ACICULARE	24	FROMEA FRAGILIS
	21	ENDOSCRINIUM CAMPANULA	25	GONYAULACYSTA HELICOIDEA HELICOIDEA
-	22	EXOCHOSPHAERIDIUM PHRAGMITES	26	HESLERTONIA HESLERTONENSIS
	23	FLORENTINIA MANTELLII/COOKSONIAE group	6	HYSTRICHODINIUM VOIGTII
-	24	FROMEA FRAGILIS	7	HYSTRICHOSPHAERINA SCHINDEWOLFII
	25	GONYAULACYSTA HELICOIDEA HELICOIDEA	27	KIOKANSIUM POLYPES POLYPES
	20	HESLERTONIA HESLERTONENSIS	8	KLEITHRIASPHAERIDIUM EOINODES
	27	KIOKANSIUM POLYPES POLYPES	40	LEPTODINIUM? HYALODERMOPSE
-anan e	28	ODONTOCHITING OPERCULATA	9	MUDERONGIA CF. M. PARIATA
	29	OLIGOSPHAERIDIUH COMPLEX	41	NYKTERICYSTA? VITREA
-	30	PALAEOPERIDINIUM CRETACEUM	10	ODONTOCHITINA IMPARILIS
	31	PSEUDOCERATIUM NUDUM	28	ODONTOCHITINA OPERCULATA
	32	PSEUDOGERATIUM CF. P. RETUSUM	42	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
-	33	SPINIFERITES SPP.	29	OLIGOSPHAERIDIUM COMPLEX
	34	TANYOSPHAERIDIUH BOLETUS	11	OLIGOSPHAERIDIUM? ASTERIGERUM
:	35 1	GIRCULUDINIUM? SP. 2	30	PALABOPERIDINIUM CRETACEUM
1	36	ULEISTUSPHAERIDIUM HUGUONIOTII	32	PSEUDOCEDATIUM FICENACKII
	37 1	DESHOLYSTH PLEKTH	43	PSRUDUCERATIUM AURUM
-	38 1	FILIDEOTRICHT HLBERTII	31	DECUDOCERATION DELLIPEDIN
	39 1	LEPTODIDIUTYUM IMPERFECTUM	12	DEPUDOCEDATIUM TOVEAP CD NOV
	40	LEPTODINION? HYALODERMOPSE	13	PERDOCERATION TOVERE SP. NOV.
		NINTERIOTSTHE VIIKEH	48	PIEROSPERMELLA UP. F. AUSTRALIENSIS
	42 1	DETODSFRMERIDION CF. U. PULGMERRIMUM	14	CRIVITERATE COD
	43	PSEUDOUCKHTTUM EISENHUKTT	33	CUDTTI TODUARDA DEDI UCTRA
	4.	TRICHODINIUM SPEETONENSE	34	TANYOSPHAERIDIUM BOLETUS
	45	UESPERAPSIS LANGICARNIS	45	TRICORNALITIM SPERTONENSE
- 0.000	47	VED EROFSIS EUROIGUKNIS	45	VESPEROPSIS LONGICORNIS
:=	48	PTEROSPERMELLA CF. P. AUSTRALIENSIS	47	WALLODINIUM KRUTZSCHII
	sub	zone		section 33
11	700	9		
Apt	stan			Rold Bjerge Traill Ø
		-		

0.2	a:		
			SPECIES LOCATION INDEX
	61. 87	Index	numbers are the columns in which species appear.
32			
55		INDEX	
57	n. U	NUMBER	SPECIES
	6 4		
·v•	1 BATIOLADINIUM SHAFTESBURIENSE SP. NOV.	10	BATIOLADINIUM JAEGERI
—· ;	2 CIRCULODINIUM DISTINCTUM	1	BATIOLADINIUM SHAFTESBURIENSE SP. NOV.
·v •	3 CLEISTOSPHAERIDIUM? ACICULARE	11	CHLAMYDOPHORELLA TRABECULOSA
	4 CLEISTOSPHAERIDIUM HUGUONIOTII	12	CIRCULODINIUM BREVISPINOSUM
·	5 ELLIPSOIDICTYUH IMPERFECTUM	2	CIRCULODINIUM DISTINCTUM
	6 SENTUSIDINIUM SP. 1	4	CLEISTOSPHAERIDIUM HUGUONIOTII
:	7 SPINIFERITES SPP.	3	CLEISTOSPHAERIDIUM? ACICULARE
1	8 VESPEROPSIS HAVI	5	ELLIPSOIDICTYUM IMPERFECTUM
	9 HALLODINIUM KRUTZSCHII	13	EXOCHOSPHAERIDIUM PHRAGMITES
	10 BATIOLADINIUM JAEGERI	20	LEPTODINIUM CANCELLATUM
	11 CHLANYDOPHORELLA TRABECULOSA	21	LEPTODINIUM? CF. L. DELICATUM
	12 GIRCULODINIUM BREVISPINOSUM	14	LEPTODINIUM? HYALODERMOPSE
	13 EXOCHOSPHAERIDIUM PHRAGMITES	15	LEVISPHAERA CF. L. CRASSICINGULATA
· v · v	14 LEPTODINIUM? HYALODERHOPSE	16	ODONTOCHITINA OPERCULATA
	15 LEVISPHAERA CF. L. CRASSICINGULATA	17	OLIGOSPHAERIDIUM COMPLEX
	16 DONTOCHITINA OPERCULATA	22	OLIGOSPHAERIDIUM POCULUM
0000	17 OLIGOSPHAERIDIUM COMPLEX	18	PALAEOPERIDINIUM CRETACEUM
constant in the second	18 PALAEOPERIDINIUM CRETACEUM	6	SENTUSIDINIUM SP. 1
	19 VESPEROPSIS LONGICORNIS	7	SPINIFERITES SPP.
:	20 LEPTODINIUM GANCELLATUM	23	TANYOSPHAERIDIUM BOLETUS
• • •	21 LEPTODINIUM? CF. L. DELICATUM	19	VESPEROPSIS LONGICORNIS
•	22 OLIGOSPHAERIDIUM POCULUM	8	VESPEROPSIS MAYI
· ;	23 TANYOSPHAERIDIUM BOLETUS	9	WALLODINIUM KRUTZSCHII
· :	24 HALLODINIUM LUNA	24	WALLODINIUM LUNA
4	subzone		section 34
ш	zone		Mine del Tecli A
L.Alb.	stage		Manedal Iraili Ø

465			SPECIES LOCATION INDEX		
33		Index	numbers are the columns in which species appear.		
32451 32450		INDEX NUMBER	SPECIES		
7	8 5				
:	1 BATIOLADINIUM JAEGERI	1	BATIOLADINIUM JAEGERI		
	2 CHLANYDOPHORELLA TRABECULOSA	2	CHLAMYDOPHORELLA TRABECULOSA		
:	3 CLEISTOSPHAERIDIUM HUGUONIOTII	3	CLEISTOSPHAERIDIUM HUGUONIOTII		
	4 EPELIDOSPHAERIDIA SP. 1	18	CLEISTOSPHAERIDIUM? ACICULARE		
	5 EXOCHOSPHAERIDIUM PHRAGHITES	7	DOROCYSTA LITOTES		
—· :	6 OLIGOSPHAERIDIUM CF. O. TOTUM	4	EPELIDOSPHAERIDIA SP. 1		
:	7 DOROCYSTA LITOTES	5	EXOCHOSPHAERIDIUM PHRAGMITES		
	B FROMEA SP. 1	8	FROMEA SP. I		
	9 HAPSOCYSTA? BENTERE SP. NOV.	9	HAPSOCYSTA? BENTEAE SP. NOV.		
-	10 KIOKANSIUM POLYPES POLYPES	10	KIOKANSIUM POLYPES POLYPES		
	11 ODONTOCHITINA ANCALA	19	LITOSPHAERIDIUM SIPHONIPHORUM		
	12 ODONTOCHITINA OPERCULATA	11	ODONTOCHITINA ANCALA		
	13 OLIGOSPHAERIDIUM COMPLEX	12	ODONTOCHITINA OPERCULATA		
	14 PALAEOPERIDINIUM? SP. 1	6	OLIGOSPHAERIDIUM CF. O. TOTUM		
	15 PSEUDOCERATIUN AFF. P. EXPOLITUM	13	OLIGOSPHAERIDIUM COMPLEX		
	16 RHOMBODELLA PAUCISPINA	20	PALAEOPERIDINIUM CRETACEUM		
	17 SUBTILISPHAERA KALAALLITI SP. NOV.	14	PALAEOPERIDINIUM? SP. 1		
	18 CLEISTOSPHAERIDIUM? ACICULARE	15	PSEUDOCERATIUM AFF. P. EXPOLITUM		
· :	19 LITOSPHAERIDIUM SIPHONIPHORUM	21	PSEUDOCERATIUM EISENACKII		
;	20 PALAEOPERIDINIUM CRETACEUM	16	RHOMBODELLA PAUCISPINA		
· ;	21 PSEUDOCERATIUM EISENACKII	17	SUBTILISPHAERA KALAALLITI SP. NOV.		
2	subzone		section 35		
v	zone	SE of Rold Bjerge Traill Ø			
U. Alb.	stage				

T

	-	-
ъ	6	1
	.,	
-	~	•

0 1 2 5 7	<u> </u>		
			SPECIES LOCATION INDEX
32		Index	numbers are the columns in which species appear.
*****		INDEX	
93 93 93	n u U U	NUMBER	SPECIES
		-	
····	1 CHICHAOUADINIUM VESTITUM	36	ACRITARCH
	2 KIOKANSIUM POLYPES POLYPES	32	BATIOLADINIUM JAEGERI
· · · · · ·	3 PSEUDOCERATIUM CF. P. RETUSUM	28	BOURKIDINIUM GRANULATUM
—·	4 EPELIDOSPHAERIDIA SP. 1	1	CHICKAOUADINIUM VESTITUM
	5 FROMEA SP. 1	9	CHLAMYDOPHORELLA TRABECULOSA
	6 ODONTOCHITINA ANGALA	10	CIRCULODINIUM DISTINCTUM
 ·	7 ODONTOCHITINA OPERCULATA	29	CLEISTOSPHAERIDIUM HUGUONIOTII
	8 PALAEOPERIDINIUM CRETACEUM	26	DESMOCYSTA PLEKTA
	9 GHLAMYDOPHORELLA TRABECULOSA	11	DOROCYSTA LITOTES
	10 CIRCULODINIUM DISTINCTUM	4	EPELIDOSPHAERIDIA SP. 1
	11 DOROCYSTA LITOTES	30	FLORENTINIA MANTELLII/COOKSONIAE group
·····	12 FROMEA FRAGILIS	12	FROMEA FRAGILIS
	13 HAPSOCYSTA? BENTEAE SP. NOV.	5	FROMEA SP. 1
	14 ODONTOCHITINA COSTATA	13	HAPSOCYSTA? BENTEAE SP. NOV.
	15 OLIGOSPHAERIDIUM CF. D. TOTUM	2	KIOKANSIUM POLYPES POLYPES
· · · · · · · · · · · · · · · · · · ·	16 OLIGOSPHAERIDIUH COHPLEX	6	ODONTOCHITINA ANCALA
	17 PALAEOPERIDINIUM? SP. 1	14	ODONTOCHITINA COSTATA
	18 PSEUDOCERATIUM AFF. P. EXPOLITUM	7	ODONTOCHITINA OPERCULATA
	19 RHOMBODELLA PAUCISPINA	34	OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM
	20 SUBTILISPHAERA KALAALLITI SP. NOV.	15	OLIGOSPHAERIDIUM CF. O. TOTUM
	21 SENTUSIDINIUN SP. 1	16	OLIGOSPHAERIDIUM COMPLEX
	22 VESPEROPSIS AFF. V. FRAGILIS	33	OLIGOSPHAERIDIUM POCULUM
• ••••••	23 PAREODINIA SPP.	8	PALAEOPERIDINIUM CRETACEUM
	24 PSEUDOCERATIUN EISENACKII	17	PALAEOPERIDINIUM? SP. 1
· —	25 SPINIFERITES SPP.	23	PAREODINIA SPP.
· · - · ·	26 DESHOCYSTA PLEKTA	18	PSEUDOCERATIUM AFF. P. EXPOLITUM
· · · ·	27 XIPHOPHORIDIUM ALATUN	3	PSEUDOCERATIUM CF. P. RETUSUM
· · · · ·	28 BOURKIDINIUH GRANULATUH	24	PSEUDOCERATIUM EISENACKII
· · · ·	29 CLEISTOSPHAERIDIUM HUGUONIOTII	37	PTEROSPERMELLA CF. P. AUSTRALIENSIS
· · · - ·	30 FLORENTINIA MANTELLII/COOKSONIAE group	19	RHOMBODELLA PAUCISPINA
• • • • • • •	31 SUBTILISPHAERA PERLUCIDA	21	SENTUSIDINIUM SP. 1
· · · —	32 BATIOLADINIUM JAEGERI	25	SPINIFERITES SPP.
	33 OLIGOSPHAERIDIUM POCULUM	20	SUBTILISPHAERA KALAALLITI SP. NOV.
· · · · —	34 OLIGOSPHAERIDIUM CF. D. PULCHERRIMUM	31	SUBTILISPHAERA PERLUCIDA
· · · · —	35 HALLODINIUH LUNA	22	VESPEROPSIS AFF. V. FRAGILIS
· ·	36 ACRITARCH	35	WALLODINIUM LUNA
·-·-	37 PTEROSPERHELLA CF. P. AUSTRALIENSIS	27	XIPHOPHORIDIUM ALATUM
2	subzone		section 36
v	zone		
U. Albian	stage		Svinnurvud Bjerge Traili Ø

220 185 150 120 085 085 035 005 SPECIES LOCATION INDEX Index numbers are the columns in which species appear. 324655 324654 324653 324652 324651 324650 324650 324649 INDEX NUMBER SPECIES 1 GIRCULODINIUM DISTINGTUM ACRITARCH 36 ----2 SENTUSIDINIUM SP. 2 BATIOLADINIUM JAEGERI 11 ······ 3 DESMOCYSTA PLEKTA CAUCA PARVA 26 ----4 KIOKANSIUH POLYPES POLYPES CHLAMYDOPHORELLA NYEI 34 · · · — · · · · 5 OLIGOSPHAERIDIUM CF. O. TOTUM CHLAMYDOPHORELLA TRABECULOSA 8 6 . EPELIDOSPHAERIDIA SP. 1 1 CIRCULODINIUM DISTINCTUM 7 1 ODONTOCHITINA ANGALA 32 CLEISTOSPHAERIDIUM HUGUONIOTII ----8 CHLANYDOPHORELLA TRABECULOSA 12 CLEISTOSPHAERIDIUM? ACICULARE PALAEOPERIDINIUM CRETACEUM 3 DESMOCYSTA PLEKTA -----10 FLORENTINIA MANTELLII/COOKSONIAE group 27 DISCORSIA NANNA 11 || 12 || BATIOLADINIUM JAEGERI DOROCYSTA LITOTES 13 CLEISTOSPHAERIDIUM? ACICULARE EPELIDOSPHAERIDIA SP. 1 6 13 DOROCYSTA LITOTES EXOCHOSPHAERIDIUM PHRAGMITES 14 · · · · · — 14 EXOCHOSPHAERIDIUM PHRAGMITES 10 FLORENTINIA MANTELLII/COOKSONIAE group ···· FROMEA FRAGILIS 35 FROMEA AFF. F. EXPOLITA 16 HAPSOCYSTA? BENTEAE SP. NOV. 15 FROMEA FRAGILIS 17 ----- .-ODONTOCHITING OPERCULATA 16 HAPSOCYSTA? BENTEAE SP. NOV. 19 PALAEOPERIDINIUM? SP. 1 20 PSEUDOCERATIUM AFF. P. EXPOLITUM 21 RHOMBODELLA PAUCTERING 18 4 **KIOKANSIUM POLYPES POLYPES** . . . 31 LEVISPHAERA CF. L. CRASSICINGULATA ODONTOCHITINA ANCALA 7 ODONTOCHITINA COSTATA 33 22 || SENTUSIDINIUM SP. 1 17 **ODONTOCHITTNA OPERCULATA** 23 SPINIFERITES SPP. OLIGOSPHAERIDIUM CF. O. PULCHERRIMUM OLIGOSPHAERIDIUM CF. O. TOTUM 28 24 SUBTILISPHAERA KALAALLITI SP. NOV. 5 25 VESPEROPSIS AFF. V. FRAGILIS OLIGOSPHAERIDIUM COMPLEX 18 26 GAUCA PARVA PALAEOHYSTRICHOPHORA INFUSORIODES 29 **.**..... 27 01SCORSIA NANNA 9 PALAEOPERIDINIUM CRETACEUM 28 OLIGOSPHAERIDIUM CF. D. PULCHERRIHUM **.**..... 19 PALAEOPERIDINTUM? SP. 1 29 PALAEOHYSTRICHOPHORA INFUSORIODES 20 PSEUDOCERATIUM AFF. P. EXPOLITUM PTEROSPERMELLA CF. P. AUSTRALIENSIS **.**.... 30 XIPHOPHORIDIUM ALATUM 37 - . . __ 31 LEVISPHAERA CF. L. CRASSICINGULATA 21 RHOMBODELLA PAUCISPINA 32 CLEISTOSPHAERIDIUM HUGUONIOTII SENTUSIDINIUM SP. 1 ... 22 33 ODONTOCHITINA COSTATA 34 CHLAMYDOPHORELLA NYEI 35 FROMEA AFF. F. EXPOLITA 2 SENTUSIDINIUM SP. 2-23 SPINIFERITES SPP. 24 SUBTILISPHAERA KALAALLITI SP. NOV. 36 ACRITARCH 25 VESPEROPSIS AFF. V. FRAGILIS 37 PTEROSPERMELLA CF. P. AUSTRALIENSIS 30 XIPHOPHORIDIUM ALATUM 2 subzone section 37 ٧ zone Svinhufvud Bjerge Traill Ø **U.** Albian stage

10

333

M 303127-1 M 303127-9 M 30312715

<u>=</u>: _ -.--_ -0-_ anno _ _ _ CT 1000 . --- . . -- . . -. ____---. . . • • • • • • 2

٧

U. Albian stage

01 01	1		
33	1		SPECIES LOCATION INDEX
335		Index	numbers are the columns in which species appear.
3 3 1	ĥ	INDEX	
=== 20		NUMBER	SPECIES
—• i	I KIOKANSIUM POLYPES POLYPES	27	ACRITARCH
	2 000NTOCHITINA OPERCULATA	5	BATIOLADINIUM JAEGERI
—• I	3 VESPEROPSIS AFF. V. FRAGILIS	24	CATASTOMOCYSTIS MICRORETICULATA
—· :	+ PALAEOPERIDINIUM? SP. 1	6	CIRCULODINIUM DISTINCTUM
- :	5 BATIOLADINIUM JAEGERI	7	DESMOCYSTA PLEKTA
	6 CIRCULODINIUM DISTINCTUM	8	DOROCYSTA LITOTES
	7 DESMOCYSTA PLEKTA	9	ENDOSCRINIUM CAMPANULA
	8 DOROCYSTA LITOTES	10	EPELIDOSPHAERIDIA SPINOSA
	9 ENDOSCRINIUH CAMPANULA	11	EXOCHOSPHAERIDIUM PHRAGMITES
	10 EPELIDOSPHAERIDIA SPINOSA	12	FROMEA AMPHORA
	11 EXOCHOSPHAERIDIUM PHRAGMITES	13	FROMEA SP. 1
	12 FROMEA AMPHORA	14	HAPSOCYSTA? BENTEAE SP. NOV.
	13 FROMEA SP. 1	1	KIOKANSIUM POLYPES POLYPES
	14 HAPSOCYSTA? BENTEAE SP. NOV.	25	LEVISPHAERA CF. L. CRASSICINGULATA
	15 0LIGOSPHAERIDIUM COMPLEX	2	ODONTOCHITINA OPERCULATA
·····	16 OVOIDINIUM? SP. 1	15	OLIGOSPHAERIDIUM COMPLEX
	17 PALAEOHYSTRICHOPHORA INFUSORIODES	16	OVOIDINIUM? SP. 1
	18 PALAEOPERIDINIUM CRETACEUM	17	PALAEOHYSTRICHOPHORA INFUSORIODES
-	19 RHOMBODELLA PAUCISPINA	18	PALAEOPERIDINIUM CRETACEUM
	20 SPINIFERITES SPP.	4	PALAEOPERIDINIUM? SP. 1
	21 SUBTILISPHAERA KALAALLITI SP. NOV.	28	PTEROSPERMELLA CF. P. AUSTRALIENSIS
	22 KENASCUS CERATICIDES	19	RHOMBODELLA PAUCISPINA
	23 XIPHOPHORIDIUM ALATUM	20	SPINIFERITES SPP.
• • • •	24 CATASTONOGYSTIS MICRORETICULATA	21	SUBTILISPHAERA KALAALLITI SP. NOV.
· ¦	25 LEVISPHAERA CF. L. CRASSICINGULATA	26	TANYOSPHAERIDIUM SALPINX
• • • • • • • • • • •	26 TANYOSPHAERIDIUH SALPINK	3	VESPEROPSIS AFF. V. FRAGILIS
— · #	27 ACRITARCH	22	XENASCUS CERATIOIDES
· :	20 PTEROSPERMELLA CF. P. AUSTRALIENSIS	23	XIPHOPHORIDIUM ALATUM
4	subzone		section 39
v	zone	1	
U.Albian	stage		Svinhutvud Bjerge Traill Ø

18			
222			SPECIES LOCATION INDEX
333		Index	numbers are the columns in which species appear.
000		Construction of the second	
3 3 5		INDEX	
255		NUMBER	SPECIES
44			
	1 CHLAMYDOPHORELLA TRABECULOSA	19	BATIOLADINIUM JAEGERI
	Z CIRCULODINIUM DISTINCTUM	1	CHLAMYDOPHORELLA TRABECULOSA
-v••	3 EPELIDOSPHAERIDIA SP. 1	2	CIRCULODINIUM DISTINCTUM
	4 FLORENTINIA MANTELLII/COOKSONIAE group	20	DOROCYSTA LITOTES
·· · · ·	5 LITOSPHAERIDIUM ARUNDUM	3	EPELIDOSPHAERIDIA SP. 1
	6 PALAEOPERIDINIUM CRETACEUM	4	FLORENTINIA MANTELLII/COOKSONIAE group
··· ·	7 PSEUDOCERATIUM AFF. P. EXPOLITUM	13	FROMEA SP. 1
	8 VESPEROPSIS MAYI	9	HAPSOCYSTA? BENTEAE SP. NOV.
— ••••	9 HAPSOCYSTA? BENTEAE SP. NOV.	5	LITOSPHAERIDIUM ARUNDUM
	10 RHOMBODELLA PAUCISPINA	21	ODONTOCHITINA OPERCULATA
	11 SUBTILISPHAERA KALAALLITI SP. NOV.	14	OLIGOSPHAERIDIUM COMPLEX
· ·	12 PALAEOHYSTRICHOPHORA INFUSORIODES	16	OVOIDINIUM SP. 2
	13 FROMEA SP. 1	15	OVOIDINIUM? SP. 1
	14 OLIGOSPHAERIDIUM COMPLEX	12	PALAEOHYSTRICHOPHORA INFUSORIODES
-	15 OVOIDINIUM? SP. 1	6	PALAEOPERIDINIUM CRETACEUM
	16 OVOIDINIUM SP. 2	17	PALAEOPERIDINIUM? SP. 1
· • • • •	17 PALAEOPERIDINIUM? SP. 1	7	PSEUDOCERATIUM AFF. P. EXPOLITUM
)	18 SPINIFERITES SPP.	10	RHOMBODELLA PAUCISPINA
· · }	19 BATIOLADINIUM JAEGERI	18	SPINIFERITES SPP.
· · · · · · ·	20 DOROCYSTA LITOTES	11	SUBTILISPHAERA KALAALLITI SP. NOV.
· · }	21 ODONTOCHITINA OPERCULATA	8	VESPEROPSIS MAYI
• • 1	22 HALLODINIUM KRUTZSCHII	22	WALLODINIUM KRUTZSCHII
· ·	23 XENASCUS CERATIOIDES	23	XENASCUS CERATIOIDES
• •	24 XIPHOPHORIDIUM ALATUM	24	XIPHOPHORIDIUM ALATUM
3	subzone		section 40
V	7000		shallow well
V	20118		Suisbufund Biorge Treill Ø
U.Albian	stage		Svinnurvud Bjerge Traili Ø

Key to Species Diversity

= Very Rare	0- 0.49%
= Rare	0.5- 0.99%
= Few	1.0- 4.9 %
= Frequent	5.0~ 9.9 %
= Common	10.0-24.9 %
= Abundant	25.0-49.9 %
= Dominant	50.0-100 %

? = Questionably Present

= Not Present

Enclosure 1. Lithologies, thicknesses and biostratigraphical correlation of the 40 sections that yielded dinoflagellate cysts. The section numbers correspond to the numbers used on the insert map. Lines on the left of the lithological columns indicate positions of the studied samples. The thickness of each section is also indicated to the left of each column.

Enclosure 2. Composite rangechart and species diversity. The samples are numbered from 1 to 74 followed by the GGU sample number. The numbers to the right of the GGU numbers refer to the numbered sections. Further explanations to the range-chart are given in the Appendix; the key to the species diversity is given on p. 171.

×

